
Statistical Learning, Spring 2017

Homework exercise 4

Due date: 26 June 2017

(* Note: another problem will be added to the final version of this homework, probably on boosting *)

1. Categorical splitting algorithm for CART
Prove the favorable property mentioned in ESL 9.2.4: if we are splitting on a categorical variable Xj

with q values and looking for the optimal split in terms of either squared error reduction (for regression)
or Gini index (for 2-class classification), then an optimal split out of the possible 2q−1 splits is always
one of the q − 1 splits defined by:

• Sort the q groups by their average response: ȳ(1) ≤ ȳ(2) ≤ ... ≤ ȳ(q).
• Consider only splits along this sequence, i.e., ones which divide according to whether Xj ∈
{g(1), g(2), ..., g(k)} for some k < q.

Hint: Prove this by negation, showing that you can improve a split that does not comply with this
condition by “switching” values of Xj between the splits.

2. Playing around with trees
Run a variety of tree-based algorithms on our competition data and show their performance. Compare:

• Small tree without pruning

• Large tree without pruning

• Large tree after pruning with 1-SE rule

• Bagging small trees (100 iterations)

• Bagging large trees (100 iterations)

Do this under five-fold cross validation on our competition training set, and use the results of the five
different folds to calculate confidence intervals for performance. Plot all the results in a reasonable
way (e.g. using boxplot()) and comment on them. Explain your choices of “small” and ”large”.
Hints: a. Start early since bagging may take a while to run. b. Use as a basis the code from class
which implements much of this.

3. ESL 7.5 (7.6 in 2nd edition): Degrees of freedom of Nearest Neighbors
Prove that in the standard i.i.d error model (which the book calls “additive error”), the effective degrees
of freedom of k-NN with N observations is N/k.

4. ESL 7.8 (7.9 in 2nd edition): Trying out model selection methods
The use of BIC and bootstrap .362 is optional.
Tip: for all-subset modeling in R, you can use the function leaps() in the package of the same name,
which you may need to download from the CRAN repository1 and install.

1http://cran.r-project.org/web/packages/

1



5. “Kernel” representation of regular ridge regression

Consider the ridge regression model in the p > n scenario (assume full rank, so Rank(X) = n).

(a) (* +5) Show that the ridge regression solution β̂ = (XTX + λIp)
−1XTY can be written as

β̂ = XT α̂ where α̂ ∈ Rn is given by:

(XXT + λIn)−1Y.

Suggested approach (there are other approaches based on algebra identities or optimization
theory):

i. Consider the “wasteful” SVD X = Un∗pDp∗pV
T
p∗p, where the last p− n columns of U and the

last p − n rows and columns of D are all zeros. The non-zero columns of U are of course
orthonormal (as are all columns of V ).

ii. Write the ridge solution β̂ in terms of this SVD: β̂ = V D(D2 + λIp)
−1UTY (show the

derivation).

iii. Notice that UTU is a matrix with In at the top left and zeros elsewhere. Use this to argue
that V D = V DUTU .

iv. Now argue that U(D2 + λIp)
−1UT = (XXT + λIn)−1 (explain why).

(b) Since we now know the optimal β̂ ∈ Rp has a representation as XT α̂ with α̂ ∈ Rn, we can now
plug the representation β = Xα into the ridge criterion ‖Y −Xβ‖22 + λ‖β‖22.
Do this, and rewrite this criterion as a function of only Y , K = XXT and α.

(c) Explain why this means that if we are given K we can solve the problem in a complexity that
does not depend on p. If we have to calculate K as well from X, does this representation still
help to solve the problem more efficiently than calculating β̂ directly? Explain briefly.

(d) If we want to predict at a new point x0, can we do it based on its n inner products K0i =< x0, Xi >
without needing to represent X or x0 explicitly?

6. AdaBoost and ε-Adaboost
This problem refers to the AdaBoost algorithm (Freund and Schapire, 1997), which is used for binary

classification with labels yi ∈ {±1}. Adaboost initializes f̂0 = 0, wi ≡ 1, then for t = 1...T updates:2

(a) Fit a classification tree with response y and weights w on the observations, getting tree ht

(b) Denote by Errt the (weighted) misclassification error of ht

(c) Set αt = 0.5 log ((1− Errt)/Errt)
(d) Update weights: wi ← wi exp (−αt(yiht(xi)))

The model after step t is ft(x) =
∑t
u=1 αuhu(x), the final model is fT , and classification if according

to the sign of fT (x).
As we said in class, from the coordinate descent perspective of boosting, AdaBoost can be viewed as
gradient boosting with loss function L(y, ŷ) = exp(−yŷ) and line-search steps, explicitly:

• Fitting a classification tree is minimizing
∑
i wiyihk(xi) = 〈wy, hk(X)〉 (so wiyi is the actual

gradient)

• The calculated αt is the solution to the line search problem: αt = arg minα
∑
i L (yi, (fT−1 + αht)(xi))

• The updated wi is indeed (proportional to) the absolute value of the gradient:

wi ∝
∣∣∣∣dL (yi, l)

dl
|l=f̂t(xi)

∣∣∣∣
2Note that this algorithmic description differs in a couple of points from what I wrote on the board in class – the description

here is the accurate one

2



(a) Choose one of the three properties above and prove explicitly that it holds (for example, if you
choose the first one, show how fitting hk classification tree minimizing weighted miclassification
error is equivalent to choosing a coordinate descent direction in the exponential loss function).

(b) The code in www.tau.ac.il/∼saharon/StatsLearn2017/AdaBoost.r implements AdaBoost on the
competition data for the problem of whether y > 3 or y ≤ 3. Read the code carefully to make
sure you understand the details. Note especially the parameters ”method” and ”weights” that
rpart takes.

i. With 8000-2000 training-test division as in the code, run the algorithm for 1000 iterations
and draw a plot of training and test misclassification as a function of iterations. Explain its
form.

ii. Change the algorithm from line-search boosting to ε-boosting with ε = 0.01, not changing
the other parameters. Run this version for 1000 iterations and draw the same plot. Discuss
the results and compare to the line-search version.

iii. Now change the loss function from the exponential loss to squared error loss, and the approach
to the regular gradient boosting with regression tree. Explain briefly in writing what you did,
and run with the same parameters (ε = 0.01, T = 1000). Classify according to sign of ŷ and
repeat the same analysis again. Discuss the relative results.

iv. (* +5) Play with the parameters in one (or all) of the algorithms (tree depth or other stopping
criteria, ε, T ) to change the results. Show how you can guarantee much better training results.
Can you find settings that give much better testing results?

3

www.tau.ac.il/~saharon/StatsLearn2017/AdaBoost.r

