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Five comments articles were published – two of them 

are nowadays professors in our department – Ruth Heller 

and Dani Yekutieli. 

 

We will discuss some of their comments. 
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*FDR – introduction and former 

methods 



*
 

*We test s null hypotheses simultaneously. 

*When s is large, we can’t control the 

possibility to have one mistake or more 

(Familywise error rate), is we want 

reasonable power. 

 



*Some methods were suggested to control the proportion of the 

false rejections. 

 

*false discovery proportion (FDP), defined to be the fraction 

of rejections that are false rejections  

*F – false rejection number ; R – total rejection number  

 

 



*
*BH procedure 
*The first known method proposed for control of the FDR is the 

stepwise procedure of Benjamini and Hochberg (1995) based 

on p-values for each null hypothesis. 

 

 

 

 

 



*Let’s define 

 

 

 

 

*This method provide asymptotic control of the FDR, under two 

conditions: 

*1. The p-values are independent. 

2. And, under H0:  

Or, in some cases:  

 

 

 



*Yekutieli proved that the method is valid also in case of low 

positive dependency. 

*Also he comment that in all possible structure of dependency: 

 

 

*He had also proved, that under any dependency, we can control 

FDR if we use the follows: 

 

*But the power in this case is very low. 



*If we know the number of true null hypotheses (𝑆0), we can 

improve BH, by using: 

 

 

 

*But we don’t know 𝑆0, so we should estimate it: 

*  
 

 



*Explanation: As long as each test has reasonable power, 

then most of the “large” p-values should correspond to 

true null hypotheses.  

*Therefore, one would expect about 𝑆0 ∗(1 − 𝜆) of the p-

values to lie in the interval (𝜆, 1], assuming that the p-

values corresponding to the true null hypotheses have 

approximately a uniform [0, 1] distribution.  

*Adding one in the numerator is a small-sample adjustment 

to make the procedure slightly more conservative, and to 

avoid an estimator of zero for 𝑆0. 



*How choosing 𝝀?  

*Big and controversial question… 

 

*In the forward simulations the authors have chose 

𝝀=0.5, because this is the default of the inventor of the 

method. 

 

*Ruthi Heller, in her comment, argued that the follow is 

more reliable: 

𝜆 =
𝛼

1 + 𝛼
 

In the reply, another simulations were presented 

(according to that choice), but the results weren’t 

better. 



Advantages:  

*Storey et al. (2004) prove that this adaptive procedure controls 

the FDR asymptotically whenever a weak dependence condition 

holds – independence / dependence within blocks / mixing-type 

situations. 

Disadvantages: 

*but, unlike Benjamini and Yekutieli (2001), it does not allow for 

arbitrary dependence among the p-values. It excludes, for 

example, the case in which there is a constant correlation across 

all p-values.  



*
*For this reason, Benjamini et al. (2006) develop an alternative 

procedure, which works as follows: 

 



The problem: 

*We saw three method, with different demanded conditions . 

 

*But, none of them have used in the structure of the data. 

 

The proposed solutions: 

*The authors wont to try improving the results, by using the 

estimated distribution of the p-values. And estimate it by 

bootstrap or subsampling methods.  

 



*Validity:  

*Benjamini et al. (2006) prove that this 

procedure controls the FDR whenever the p-

values are independent of each other.  

 

*They also provide simulations which suggest 

that this procedure continues to control the 

FDR under positive dependence. 



*Motivation for new methods 

 



*In order to motivate our procedures, first note that for 

any stepdown procedure based on critical values c1, . . . 

cs , we have that: 

 

 

 

 

 



*Let 𝑇𝑛,𝑟:𝑡 denote the rth largest of the t test 

statistics 𝑇𝑛,1, … , 𝑇𝑛,𝑡 , ; in particular, when 

*t = s0, 𝑇𝑛,𝑟:𝑠0 denotes the r’th largest of the 

test statistics corresponding to the true 

hypotheses.  

*Then, with probability approaching one, we 

can assume that the false H0 were rejected, 

and we have that: 

 



*Our goal is to ensure that this expression is 

bounded above by 𝛼 for any P, at least 

asymptotically. 

 

*To this end, first consider any P such that  

  s0 = 1. Then, FDR is simply: 

 

 



*A suitable choice of c1 is thus the smallest 

value for the expression above is bounded 

above by 𝛼; that is: 

 

 

 

*Note that if s*𝛼 ≥1, then c1 so defined is 

equal to −∞. 

 

 

 

 



*Having determined c1, now consider any P 

such that s0 = 2. Then, FDR is simply: 

 

*A suitable choice of c2 is therefore the 

smallest value for which FDR is bounded 

above 𝛼. 

 



*Note that when j = s, FDR simplifies to: 

 

 

*So equivalently, 

 

 

 

 

But we don’t know P!! 

 



*A bootstrap approach 



*In this section, we specialize our 

framework to the case in which interest 

focuses on a parameter vector: 

 

 

*The null hypotheses may be one-sided, in 

which case: 

 

*or the null hypotheses may be two-sided, 

in which case 

 

 



*We will consider the ‘studentized’ test 

statistics: 

 

 

*Or: 

 

 

*`````may either be identically equal to 1 

or an estimate of the standard deviation 

of 



*Recall that the construction of critical values 

in the preceding section was infeasible because 

of its dependence on the unknown P.  

*For the bootstrap construction, we therefore 

simply replace the unknown P with a suitable 

estimate  



*Let’s go to the bootstrap world: 

 

 

Then, we get: 

 

 

 

 

Question: Why we use 𝑃𝑛  𝑖𝑛𝑠𝑡𝑒𝑎𝑑 𝑜𝑓𝑃0? 

 

 

 



*Answer: For the validity of this approach, we 

require that the distribution of  provides a 

good approximation to the distribution of 

𝑇𝑛,𝑗 whenever the corresponding null 

hypothesis Hj is true.  



*How to choose 𝑷𝒏 ? 

*The exact choice of 𝑃𝑛  will, of course, depend 

on the nature of the data.  

*If the data X = (X1, . . . ,Xn) are i.i.d., then a 

suitable choice of 𝑃𝑛  is the empirical 

distribution, as in Efron (1979).  

*If, on the other hand, the data constitute a time 

series, then 𝑃𝑛  should be estimated using a 

suitable time series bootstrap method. 



 

 

 

Question:  

is 𝜽 𝑷𝒏 = 𝜽𝒏 ? 



*Answer: No! The first is the plug-in estimator , by the 

bootstrap method, and the second is the empirical 

estimator. 

*But, under some conditions, they are equal. 

*Importantly, it depends on the bootstrap method – 

it’s possible just under Efron’s bootstrap, the circular 

blocks bootstrap, or the stationary bootstrap in Politis 

and Romano. 

*On the other hand, this substitution does not in 

general affect the asymptotic validity. 



*Given a choice of 𝑃𝑛 , define the critical values 

recursively as follows: having determined 

𝑐𝑛,1 ,… , 𝑐𝑛,𝑗−1  compute 𝑐𝑛,𝑗  according to the 

rule: 

 

*Remark: For each j, we take the j smallest T*, 

and assume they are correspond to H0. 

 

 

 

 

 



*Computational problem: 

*Wenge Guo:  

“When the bootstrap method is applied to 

analyzing microarray data, it is a challenge to 

compute all the critical values. For example, 

when Professor Wolf applied this method, on my 

request, to a simulated data set with 4,000 

variables, it took him more than 70 hours to do 

the computations.” 



*Alternative procedure: 

*So, he suggests alternative procedure. He’s 

main idea is not calculate 𝑃𝑛  by the bootstrap 

sampling, but using the bootstrap sampling 

directly.  

 

   



*having determined 𝑐𝑛,1 ,… , 𝑐𝑛,𝑗−1  compute 𝑐𝑛,𝑗  according 

to the rule: 

 

 



*But: 

 

 

 

 

*For every b = 1, . . . , B, let 𝑟∗𝑏𝑗 denote the total 

number of rejections when applying a stepdown 

aprocedure with the critical constants 𝑐𝑖  , i = 1, . . . , j 

− 1, to the ordered test statistics 𝑇∗𝑏
𝑖:𝑗
  

*and hence: 

 

 



*Authors reply: 

“We agree that the main drawback of the 

bootstrap method is its computational burden… 

Actually, our software implementation is really 

comparable in computational complexity to this 

suggestion. So, unfortunately, things could not 

be sped up significantly along these lines.” 

Question: are their claim is right? 



*



*There are a lot of assumptions… 

*Exchangeablity: 

 

 

*It seems like a strong assumption. 

*In the subsampling method, we’ll can omit this 

assumption. 

 

  

 



*Another comment: 

*What is the meaning of 

*In reply to Heller comment, the authors 

have cleared it: 

 

 

 

 



*
*We’ll bring the proof that all false H0 are 

rejected asymptotically in probability 

tending to 1: 

*In order to illustrate better the main 

ideas of the proof, we first consider the 

case in which P is such that the number 

of true hypotheses is s0 = 1.  

*Since 𝜃𝑗(P) ≠ 𝜃0,𝑗 for j≥ 2, it follows that 

 



*But this not say anything, if 

𝑐𝑛,𝑗 → ∞ 

So, we need to proof that 𝑐𝑛,𝑗  are bounded above. 

*Recall that 𝑐𝑛,𝑗   is defined as follows: having determined 𝑐𝑛,1  ,… 

𝑐𝑛,𝑗−1 ,  

*𝑐𝑛,𝑗  bring to minimum: 

 

 

 

*Which is bounded above by: 

 

*Which is bounded above by: 

 

 



*Therefore, 𝑐𝑛,𝑗   is bounded above by the 1−𝛼/s 

quantile of the (centered) bootstrap 

distribution of the maximum of all s variables. 

*Define:  

 



*In this notation, the previously derived bound 

for 𝑐𝑛,𝑗  may be restated as  

 

*By the Continuous Mapping Theorem, 𝑀𝑛 

(·,P) converges in distribution to a limit 

distribution M(·,P), and the assumptions 

imply that this limiting distribution is 

continuous. 



*Choose 0 < 𝜖 <
𝛼

𝑠
 so that M(·,P) is strictly increasing at 

𝑀−1(1 −
𝛼

𝑠
+𝜖, 𝑃).  𝐹𝑜𝑟 𝑠𝑢𝑐ℎ 𝜖, 

 

 

 

 

*Therefore, 𝑐𝑛,𝑗   is with probability tending to one less than 

𝑀−1(1 −
𝛼

𝑠
+𝜖, 𝑃).  

*The claim that 𝒄𝒏,𝒋  is bounded above in probability is thus 

verified. 



*The theorem itself is proven much for the assumption that 

 

 

*We should also pay attention to Guo comment: 

“Another point we need to be careful about is how the 

computational precisions of former critical values influence 

that of the latter.  

When s is large, the maximum critical value is determined by a 

large number of former critical values.  

Even though these former critical values are slightly 

imprecise, their total effect on the maximum critical values 

might be huge and thereby greatly changes the final decisions on 

null hypotheses.” 



*Subsampling approach 



*In this section, we describe a subsampling-based 

construction of critical values for use in a stepdown 

procedure that provides asymptotic control of the FDR.  

*Here, we will no longer be assuming that interest 

focuses on null hypotheses about a parameter vector 

𝜃(P ), but we will instead return to considering more 

general null hypotheses. 

*Moreover, we will no longer require that the limiting 

joint distribution of the test statistics corresponding to 

true null hypotheses be exchangeable. 



*In order to describe our approach, we will 

use the following notation. For b < n, let 

𝑁𝑛 =
𝑛
𝑏
. 

*And let 𝑇𝑛,𝑏,𝑖,𝑗 denote the statistic 𝑇𝑛,𝑗 

evaluated at the i'th subset of data of size b.  

*Let 𝑇𝑛,𝑏,𝑖,𝑟:𝑡 denote the t’th largest of the test 

statistics 

𝑻𝒏,𝒃,𝒊,𝟏…𝑻𝒏,𝒃,𝒊,𝒕 



*Finally, define critical values 𝑐𝑛,1  ,… , 𝑐𝑛,𝑠  recursively as 

follows:  

*having determined 𝑐𝑛,1  ,… , 𝑐𝑛,𝑗−1   

compute 𝑐𝑛,𝑗  according to the rule: 

 





Remark: The above approach can be extended 

to dependent data as well. For example, if the 

data X = (X1, . . . , Xn) form a stationary 

sequence, we would only consider the n − b + 

1 subsamples of the form (Xi,Xi+1, . . . , 

Xi+b−1). Generalizations for nonstationary 

time series, random fields, and point 

processes are further discussed in Politis et al. 

(1999). 



*Interestingly, even under the exchangeability 

assumption, where both the bootstrap and 

subsampling are asymptotically valid, the two 

procedures are not asymptotically equivalent.  

*To see this, suppose that s = s0 = 2 and that the 

joint limiting distribution of the test statistics is 

(𝑇1, 𝑇2), where 𝑇𝑖~𝑁 0, 𝜎𝑖
2 , 𝜎1=𝜎2, and 𝑇1 is 

independent of 𝑇2.  

*Then, the bootstrap critical value 𝑐𝑛,1  tends in 

probability to 𝑍1−𝛼, while the corresponding 

subsampling critical value tends in probability 

to the 1 − 𝛼 quantile of min (𝑇1, 𝑇2), which will 

be strictly less than 𝑍1−𝛼. 



*Simulations 



*Since the proof of the validity of our 

stepdown procedure relies on asymptotic 

arguments,it is important to shed some light 

on finite sample performance via some 

simulations.  

*Therefore, this section presents a small 

simulation study in the context of testing 

population means. 



*We generate random vectors X1, . . . , Xn from an s-

dimensional multivariate normal distribution with 

mean vector 𝜃 = (𝜃1,…, 𝜃𝑠), where n = 100 and s = 50.  

*The null hypotheses are 𝐻𝑗: : 𝜃𝑗 ≤ 0, and the 

alternative hypotheses are 𝐻′𝑗: 𝜃𝑗 > 0.  

*The test statistics are 𝑇𝑛,𝑗 = 𝑛 𝜃𝑗 /𝜎𝑗  , where 

  



*We consider three models for the covariance 
matrix Σ having (i, j) component 𝜎𝑖,𝑗 . The models 
share the feature 𝜎𝑖,𝑗 = 1 for all i; so we are left 
to specify 𝜎𝑖,𝑗 for 𝑖 ≠ 𝑗 

– Common correlation: 𝜎𝑖,𝑗 = 𝜌, where 𝜌=0, 0.5, 
or 0.9. 

– Power structure: 𝜎𝑖,𝑗 = (𝜌|i−j|, where 𝜌 = 0.95. 

– Two-class structure: the variables are grouped 
in two classes of equal size s/2. 

Within each class, there is a common correlation 
of 𝜌 = 0.5;  

and across classes, there is a common correlation 
of 𝜌 =−0.5.  



*Means: 

*We consider four scenarios for the mean vector𝜃 = (𝜃1
, … , 𝜃𝑠 ) 

*– All 𝜃𝑗 = 0. 

*– Every fifth 𝜃𝑗 = 0.2, and the remaining 𝜃𝑗 = 0, so there 
are ten 𝜃𝑗= 0.2. 

*– Every other 𝜃𝑗 = 0.2, and the remaining 𝜃𝑗 = 0, so there 
are twenty five 𝜃𝑗 = 0.2. 

*– All 𝜃𝑗 = 0.2 

 

*We’ll run five methods: BH, STS, BKY, bootstrap method, 
and Subsampling method. The results of the subsampling 
method were not satisfactory, and omitted from the 
article! 

 

 

 

 

 





– BH, BKY, and Boot provide satisfactory control of the FDR in 

all scenarios. On the other hand, STS is liberal under positive 

constant correlation and for the power structure scenario. 

– For the five scenarios with ten 𝜃𝑗 = 0.2, BKY is as powerful 

as BH, while in all other scenarios it is more powerful. In 

return, for the single scenario with ten 𝜃𝑗 = 0.2 under 

independence, Boot is as powerful as BKY, while in all other 

scenarios it is more powerful. 

– In the majority of scenarios, the empirical FDR of Boot is 

closest to the nominal level 𝛼 = 0.1. 

– STS is often more powerful than Boot, but some of those 

comparisons are not meaningful, namely when Boot provides 

FDR control while STS does not. 





*

*The goal of this subsection is to study whether FDR control is 

maintained for ‘general’ covariance matrices.  

*We generate 1,000 random correlation matrices uniformly from 

the space of positive definite correlation matrices. We reduce 

the dimension from s = 50 to s = 4 to conter the curse of 

dimensionality. 

*As far as the mean vector is concerned, two scenarios are 

considered: one 𝜃𝑗  = 0.2 and one 𝜃𝑗 = 20. The latter scenario 

results in perfect power for all four methods. 







*They also experimented with a larger value of s 

and different fractions of false null hypotheses. 

The results (not reported) were qualitatively 

similar. In particular, they could not find a 

constellation where any of BH, BKY, or Boot were 

liberal. 



*Empirical applications 



*We revisit the data set of Romano et al. (2008) concerning the 

evaluation of hedge funds. There are s = 209 hedge funds 

with a return history of n = 120 months compared to the 

risk-free rate as a common benchmark. The parameters of 

interest are 

*𝜃𝑗 = μj − μB, where μj is the expected return of the j th hedge 

fund, and μB is the expected return of the benchmark. 



*We revisit the data set of Romano et al. (2008) concerning the 

evaluation of hedge funds. There are s = 209 hedge funds 

with a return history of n = 120 months compared to the 

risk-free rate as a common benchmark. The parameters of 

interest are 

*𝜃𝑗 = μj − μB, where μj is the expected return of the j th hedge 

fund, and μB is the expected return of the benchmark. 



*Naturally, the estimator of 𝜃𝑗 is given by 

 

 

 

 

Accordingly, one has to account for this time series nature in 

order to obtain valid inference. 

 



*
*The pairwise correlations of seven numeric ‘fitness’ variables, 

collected from n = 31 individuals, are analyzed. Denote the 

𝑠 =
7
2
= 21 pairwise population correlations. The analysis is 

based on B = 5,000 repetitions. 

*we use Efron’s bootstrap to both compute individual p-values 

and to carry out our bootstrap FDR procedure. 

 



*
 

*A. Finite sample size. 

 

*B. Big s and low n, or 𝑠 → ∞, 𝑎𝑠 𝑛 → ∞ 

 

*C. Outlines  

 

*D. Potential to control FDP? 

 

*E. benefits of stepdown defining of critical values  


