
Statistical Genetics, Fall 2025-6

Class notes 10: Heritability estimation and LMMs in case-control

studies

Basic binormal identities

Assume (
X
Y

)
∼ N

(
0,

(
σ2
X ρσXσY

ρσXσY σ2
Y

))
.

Then:

Y |X = x ∼ N

(
ρ
σY
σX

x, (1− ρ)2σ2
Y

)
.

Heritability estimations and LMMs for disease studies

Assume we have a disease with prevalence K in the population (P(Y = 1) = K). Going back to
basic definitions, we can adopt the liability threshold model, assuming an underlying continuous
pheontype:

L = G+ E , Y = I{L > t}.

Since the liability L is unobserved, we can safely assume σ2
L = σ2

g+σ2
e = 1, and even L ∼ N(0, 1) ⇒

t = Z1−K

For GWAS data, it is typically assumed as in continuous phenotypes that:

L ∈ Rn ∼ N
(
0, Gσ2

g + I(1− σ2g)
)
,

with the actual phenotype Y = I{L > t}, applied coordinate-wise.
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Now we can investigate the connections between the observed Y and unobserved L:

E(L|Y = 1) = E(L|L > t) =

∫∞
t uϕ(u)du

1− Φ(t)
=

1

K

∫ ∞

t
(2π)−1/2 exp{−0.5 · u2}udu =

=
1

K
− (2π)−1/2 exp{−0.5 · u2}|∞u=t =

ϕ(t)

1− Φ(t)

E(L2|Y = 1) = E(L2|L > t) =

∫∞
t u2ϕ(u)du

1− Φ(t)
=

−ϕ(u)u|∞u=t +
∫∞
t ϕ(u)du

1− Φ(t)
=

=
tϕ(t) + (1− Φ(t))

1− Φ(t)
= 1 +

tϕ(t)

1− Φ(t)
.

Cov(L, Y ) = E(Y L)− E(Y )E(L) = P(Y = 1)E(L|Y = 1) = K
ϕ(t)

K
= ϕ(t).

Cor(L, Y ) =
ϕ(Z1−K)√
K(1−K)

.

In twins studies, we can still use MZ and DZ twins to estimate the observed-level heritability
using the same formula:

Ĥ2
ad,obs = 2(r(MZ)− r(DZ)).

The question is, what is the connection between H2
ad,obs and σ2

g = H2
ad,liability?

This turns out to be a difficult problem, which we will get back to later. For now, let’s deal with
an easier problem.

Assume we observe G, and therefore can estimate Cor(Y,G) — can we use this to estimate
σ2
g = Cov(L,G)? The famous result which addresses that is by Dempster and Lerner (1950), for

which we need to derive some additional formulas:

E(G|L > t) = σ2
g

ϕ(t)

K
⇒ Cor(Y,G) = σg

ϕ(t)K

K
√

K(1−K)
=

σgϕ(t)√
K(1−K)

.

Therefore, we can conclude:

H2
l = σ2

g = Cor2(Y,G) · K(1−K)

ϕ(t)2
.

For rare diseases (K small), we have ϕ(Z1−K) ≈ K (same order of magnitude), and therefore
H2

l >> Cor2(Y,G) = H2
obs, in other words: the heritability is much bigger on the unobserved

liability scale than on the observed scale.
Thus, a methodology which arises;

1. Somehow estimate “heritability”= Cor2(Y,G) on the observed scale

2. Perform the transformation to transform it to the liability scale

This approach was adopted by Lee et al. (2011), who used the LMM approach, meaning they
assumed (for absolutely no good reason) the standard LMM model for the 0/1 phenotype:

Y√
K(1−K)

|Z,X ·∼ N(Xβ,Gσ2
g + In(1− σ2

g)),
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then in that model, estimated Ĥ2
obs = σ̂2

g , and applied the Depmster-Lerner correction:

Ĥ2
l = Ĥ2

obs ·
K(1−K)

ϕ(t)2
.

Surprisingly(?), this approach generally gives pretty good (unbiased) estimates ofH2
l in simulations.

An equally unsubstantiated approach uses twins to estimate H2
obs and applies the same correc-

tion.

These are both fundamentally unsubstantiated because there is no reason to assume additivity
between G and E on the observed scale, which is fundamental to the formulas we derived. A second
(major?) concern for the Lee et al. method is that normality is impossible here by definition, since
Y ∈ {0, 1}.

Finding a legitimate model

(This section follows Golan, Lander, Rosset (2014))
We want to see whether we can find a legitimate way of estimating H2

l from disease data under
the liability threshold model? The approach we choose generalizes Haseman-Elston regression.

Aside: Haesman-Elston for continuous phenoytpe. Assume the usual model

Y ∼ N(0, Gσ2
g + In(1− σ2

g)), (1)

then it is easy to see:
E(YiYj) = Gijσ

2
g .

Therefore, if we regress the (observed) pairs Yi × Yj on the (observed) entries Gij , the slope is an
unbiased estimate of H2 = σ2

g .

Now we want to apply the same thinking to our binary model. Let Gij = ρ for brevity. It is
easy to see that: (

li
lj

)
∼ N

(
0,

(
1 ρσ2

g

ρσ2
g 1

))
.

Therefore:

E(YiYj) = P (li > t, lj > t) =

∫ ∞

t
ϕ(u)

1− Φ

 t− σ2
gρu√

1− ρ2σ4
g

 du.

Clearly, there is no simple Haesman-Elston formula. Luckily, we can take advantage of the fact
that ρ ≈ 0 for GWAS (off-diagonal elements in G are small), and apply a first-order approximation:

E(YiYj) ≈ (1−Φ(t))

∫ ∞

t
ϕ(u)du+

∫ ∞

t
ϕ(u)ρϕ(t)σ2

gudu = K2+ρσ2
gϕ(t)

∫ ∞

t
ϕ(u)udu = K2+ρσ2

gϕ(t)
2.
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Denote Zi =
Yi−K√
K(1−K)

the standardized phenotypes, and get:

E(ZiZj) = E
(
(Yi −K)(Yj −K)

K(1−K)

)
≈

K2 + ρσ2
gϕ(t)

2

K(1−K)
− K2

K(1−K)
=

σ2
gϕ(t)

2

K(1−K)
ρ.

Conclusion: If we regress ZiZj on ρ = Gij the resulting slope b̂ is unbiased estimate of the
quantity above, and therefore an unbiased estimate of heritability is:

Ĥ2
l = σ̂2

g = b̂
K(1−K)

ϕ(t)2
,

which turns out to be exactly equal to the Dempster-Lerner correction— is that surprising? Perhaps
yes, since this is actually an approximation in this case!

Dealing with case-control sampling

Assume now that in addition, we perform case-control sampling. That is now, we assume:

� L = G+ E as before

� Y is not taken randomly from the population (where P(Y = 1) = K), but from a “rebalanced”
population, where P(Y = 1) = P >> K.

To address this setting, we can “imagine” that we now have a new population, where case prevalence
is P instead of K, by inflating the tail of the normal liability distribution. The advantage of this
approach is that we can now imagine that we do random sampling in this new population, rather
than dealing with non-random sampling in the original population.

In this setting, many interesting and surprising changes occur. For the rebalanced population,
the distribution of liability is no longer normal. Furthermore, assuming that G and E are indepen-
dent in the original population (as in the standard liability threshold model), they are no longer
independent but highly correlated after the case control sampling, due to the fact that high values
of L = G + E are preferably selected, meaning when G is high in the case control population, E
tends to be high as well.

The Lee et al. (2010) approach no longer gives reasonable results in this setting (and no one
should expect it to give).

However we can extend the first-order moment-based approach to this setting. A slightly more
complicated calculation than above (but similar in nature) now gives that if we standardize Y in the
rebalanced population: Zi =

Yi−P
P (1−P ) , and regress ZiZj on the matrix G, with a similar first-order

approximation, we get:

E(ZiZj) ≈
P (1− P )

(K(1−K))2
σ2
gϕ(t)

2ρ.

Now, the correction for the slope of the regression becomes:

Ĥ2
l = b̂

(K(1−K))2

P (1− P )ϕ(t)2
.
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