
Statistical Genetics, Spring 2024

Class notes 6: PCA

Principal component analysis — PCA and its use for stratification correction

General PCA idea: Given a data matrix Xn×p, we can consider it as n points in Rp. Assume the
columns are centered: 1TnX = 0Tp , and consider a unit vector v ∈ Rp, ∥v∥2 = 1. Then

1

n
∥Xv∥22 = ˆV ar(Xv),

is the “spread” of the data in the direction v.

PCA seeks to find directions of maximum spread, the first PC direction is defined as:

v1 = argmax
v

∥Xv∥

s.t. ∥v∥ = 1,

the direction of maximum spread. The first PC projection is Xv1.

The second PC continues this thinking:

v2 = argmax
v

∥Xv∥

s.t. ∥v∥ = 1 , v⊥v1,

the next direction of maximum spread, orthogonal to v1 — we can think that we eliminated v1
from the linear space and now look for the best direction, and so only for v3, v4, . . . .

Finding PCs is based on the SVD of X = UDV T , where:

� Un×r has orthonormal columns, with r = min(n, p)

� D = diag(d1, ..., dr) has non-negative elements, and we assume WLOG d1 ≥ d2 ≥ . . . ≥ dr,
by permuting columns of U, V

� Vp×r also has orthonormal columns

Every matrix X can be written in this way. We may also derive from this the eigendecompositions
of XTX or XXT :

XTXp×p = V D2V T , (XXT )n×n = UD2UT .
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The well known result, which is also easy to prove is that with this SVD representation: v1 = V↓1,
the first column of V, v2 = V↓2, etc.
Proof for v1 : Assume for simplicity of notation that p < n, so r = p. Then V↓1, . . . , V↓p is a basis
of Rp. For a vector v ∈ Rp, ∥v∥2 = 1, write it in this basis:

v =

p∑
j=1

αjV↓j , ∥α∥2 = 1.

Then we can write:

Xv = UDV T

 p∑
j=1

αjV↓j

 =

p∑
j=1

αjUD
(
V TV↓j

)
=

p∑
j=1

αjU↓jdj .

Now the norm gives us:

∥Xv∥22 = ∥
p∑

j=1

αjU↓jdj∥22 =
∑
j

(α2
jd

2
j ) ≤ d,1

but we know that v = V↓1 attains equality with α1 = 0, α2 = . . . = αp = 0. ■

Some notes:

1. Note that because of orthogonality we have X =
∑r

j=1 djU↓jV
T
↓j . This means we can use the

PCs to get the best low-rank approximation of X, since for q < r, Y =
∑q

j=1 djU↓jV
T
↓j is

immediately seen to be the solution of:

Y = argmin ∥X − Y ∥Fro , s.t. rank(Y ) ≤ q.

2. Simple linear algebra gives us that the total “variance” of the data is the trace of D2∑
ij

X2
ij = tr(XXT ) = tr(XTX) = tr(V D2V T ) = tr(D2) = d21 + . . .+ d2r .

This means that d2j can be interpreted as the % of variance explained by the jth
PC.

Using PCA to model stratification in genetics

We expect (and indeed see) that the ethnic structure and stratification aspects will come out as
top PCs in our data. This can be used in several ways:

1. The first or several first PC’s can be used as covariates in the regression, like the output of
the EM

2. Remove the top PCs from the matrix X before doing the testing:

X̃ = X − d1U↓1V
T
↓1 − . . .− dkU↓kV

T
↓k,

for some properly chosen k. This is equivalent to regressing the PCs out of the X’s
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3. It is common to also regress the PCs out of the response Y, which is basically equivalent to
adding the PCs as covariates to the regression, in terms of both the estimates it gives for
non-PC variables, specifically SNPs, and the t-based inference it gives in linear regression
(why?)
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