Statistical Genetics, Spring 2024 ## Class notes 1 ## Some probability and stats refreshers Iterated expectation: $\mathbb{E}(g(X,Y)) = \mathbb{E}(\mathbb{E}(g(X,Y)|X))$. Total Variation: $\mathrm{Var}(Y) = \mathbb{E}(\mathrm{Var}(Y|X)) + \mathrm{Var}(\mathbb{E}(Y|X))$. Example: Y = height, X = sex, $Y | X = F \sim N(165, 25)$, $Y | X = M \sim N(175, 35)$, $\mathbb{P}(X = F) = 0.5$. Then: $\mathbb{E}(Y) = \mathbb{E}\left(\mathbb{E}(Y|X)\right) = 0.5 \times 165 + 0.5 \times 175 = 170$. $\text{Var}(Y) = 0.5 \times 25 + 0.5 \times 35 + 0.5 \times 5^2 + 0.5 \times 5^2 = 55$. **Exponential distribution:** $X \sim exp(\lambda)$, $\mathbb{P}(X \geq t) = \exp(-\lambda t)$. It has the *lack of memory* property: $$\mathbb{P}(X > u + a | X > a) = \frac{\exp(-\lambda u + a)}{\exp(-\lambda a)} = \exp(-\lambda u),$$ so regardless of our waiting time so far a, the probability we will wait u longer is fixed. Note that other distributions don't have this property, for example for $X \sim N(0,1)$: $$\mathbb{P}(X \ge 0 | X \ge -5) \approx 0.5$$, $\mathbb{P}(X \ge 5 | X \ge 0) = 2\mathbb{P}(X \ge 5) \approx 0$. **Renewal process:** Assume $X_i \sim \exp(\lambda)$ i.i.d and we wait X_1 for the first event, then X_2 for the second etc. In a given time T the number of events: $$k(T) = \max \{i : X_1 + \ldots + X_i \le T\}.$$ Claim: $k(T) \sim Pois(\lambda T)$. Partial proof: $$\mathbb{P}(k=0) = \mathbb{P}(X_1 > T) = \exp(-\lambda T).$$ $$\mathbb{P}(k=1) = \int_0^T f(X_1 = t) \mathbb{P}(X_2 > T - t) dt = \int_0^T \lambda e^{-\lambda t} e^{-\lambda (T - t)} dt = e^{-\lambda T} \int_0^T \lambda dt = \lambda t \exp(-\lambda T).$$ etc. **Poisson and binomial:** If n is big, p is small then $Bin(n,p) \approx Pois(np)$. Intuition: n independent increments, in each one fixed probability of event \Rightarrow a memoryless process, approximately in continuous time. ## Example: Molecular clock calculations Assume now we have n generations of mutations father \rightarrow son \rightarrow grandson etc. Assume every generation has fixed probability p of mutation ("Molecular clock"). Then number of mutations k in n generations: $Bin(n, p) \approx Pois(np)$. Rather than in discrete generations, we can also think of this continuously, where a mutation can happen in every point in time at a fixed rate λ , so the waiting time for mutation has $\exp(\lambda)$ distribution with mean $1/\lambda$. If we now assume generation length is t_0 , then the number of mutations in n generations has a $Pois(nt_0\lambda)$ distribution, that is the binomial p above is $t_0\lambda$. When we look at genetic sequences and observe differences the classical problems are: - 1. Calibration: Given time $(n \text{ or } nt_0)$ estimate the mutation rate λ or p. - 2. **Time estimation:** Given the rate λ estimate the time $T = nt_0$ separating between sequences of species.