
Statistical Genetics, Spring 2022

Class notes 8: Heritability estimation and Linear Mixed Models

Notations:

• Y ∈ Rn – continuous pheontype (e.g. height)

• X ∈ Rn×p vector of fixed effect covariates (p typically small), with coefficients β ∈ Rp.

• Z ∈ Rn×M vector of random effect coefficients (q typically huge), with coefficients b ∈ mRM ,
typically assume bj ∼ N(0, σ2b ) iid

• ε ∼ N(0σ2ε In) vector of iid errors

with Y = Xβ + Zb+ ε, G = ZZt and σ2g = Mσ2b , this gives us the well known LMM:

Y |Z,X ∼ N(Xβ,Gσ2g + Inσ
2
ε ), (1)

with p + 2 parameters. We note that it is also common to assume V ar(Y ) = 1 and therefore
σ2ε = 1− σ2g and we reduce to p+ 1 parameters with one variance component σ2g .

What do the entries in G look like? We typically assume that columns of Z are standardized,
so approximately (why not exactly?)

∑
k Zik ≈ 0 ,

∑
k Z

2
ik ≈M. What about Gij =

∑
k ZikZjk/M

for j 6= k? It is usually assumed that the individuals in the study are unrelated, meaning that after
standardization we expect that ZikZjk be centered around 0. Hence once we sum over all pairs we
typically get

Gij =
1

M

∑
k

ZikZjk ≈ 0 , ∀i 6= j,

are very small. However they are not exactly 0, expressing small variations in degree of similarity
between pairs of individuals (specifically, subtle stratification like living in the same city). This is
the key in still being able to estimate the variance components — the off-diagonal elements in G
being non-zero.

The famous paper of Yang et al. (2010) applies this approach to height GWAS data and
demonstrates that the REML estimate gives σ̂2g ≈ 0.5, so finding most of the 80% heritability we
are looking for!

However we can do better from a statistical perspective: A common approach is to assume the
Spike and Slab model, where instead of bj ∼ N(0, σ2b ) iid,we assume bj ∼ F iid, with the same
mean and variance, but high probability of being zero, and low probability of being normal with
bigger variance:

F = (1− π)0 + πN(0, σ2b/π).
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An MCEM approach for the spike and slab model

This section follows Golan and Rosset (2011).

Under the spike and slab model, we can observe the following points:

• The basic model (1) is still a decent approximation, as long as π is not too tiny, due to the
CLT.

• However, we can also propose a more accurate and explicit model, by considering the identities
of the SNPs with non-zero effects as missing data vector I ∈ {0, 1}M . Given I, we can write
the exact likelihood of Y given the complete data:

Y |I ∼ N
(
Xβ,GI(σ

2
g) + In(1− σ2g)

)
, GI =

ZIZ
T
I

|I|
. (2)

• Consequently, we can write the complete data log-likelihood:

`(σ2g , π;Y, I) = π|I|(1− π)M−|I| × P(Y |I;σ2g). (3)

This last observation leads us to consider an EM approach to estimating the parameters of interest.
For simplicity, assume p = 0, so we are only estimating the heritability σ2g , and the slab probability
π. Note that under the iid model, Ii ∼ Ber(π) iid.

E-step:

`Er (σ2b , π) =
2M−1∑
i=0

P
(
I = i|Y,

(
σ2g
)(r)

, π(r)
)
`
(
σ2g , π;Y, I = i

)
.

And using Bayes theorem:

P
(
I = i|Y,

(
σ2g
)(r)

, π(r)
)

=
P (I = i, Y )

P (Y )
=

(
M
|i|
) (
π(r)

)|i| (
(1− π)(r)

)M−|i| P(Y |I = i;
(
σ2g
)(r)

)∑
j

(
M
|j|
) (
π(r)

)|j| (
(1− π)(r)

)M−|j| P(Y |I = j;
(
σ2g
)(r)

)
.

M-step is trivial given this function — simply optimize it numerically relative to the two pa-
rameters.

Major problem: the E-step requires summing over 2M configurations, with M ≈ 106 in
typical GWAS!

Solution: Instead of summing, use a stochastic sampling approach like Markov Chain Monte

Carlo (MCMC) to sample vectors I according to P
(
I = i|Y,

(
σ2g
)(r)

, π(r)
)
.
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Basic binormal identities

Assume (
X
Y

)
∼ N

(
0,

(
σ2X ρσXσY

ρσXσY σ2Y

))
.

Then:

Y |X = x ∼ N
(
ρ
σY
σX

x, (1− ρ2)σ2Y
)
.

Heritability estimations and LMMs for disease studies

Assume we have a disease with prevalence K in the population (P(Y = 1) = K). Going back to
basic definitions, we can adopt the liability threshold model, assuming an underlying continuous
pheontype:

L = G+ E , Y = I{L > t}.

Since the liability L is unobserved, we can safely assume σ2L = σ2g+σ2e = 1, and even L ∼ N(0, 1) ⇒
t = Z1−K

Now we can investigate the connections between the observed Y and unobserved L:

E(L|Y = 1) = E(L|L > t) =

∫∞
t uφ(u)du

1− Φ(t)
=

1

K

∫ ∞
t

(2π)−1/2 exp{−0.5 · u2}udu =

=
1

K
·
[
−(2π)−1/2 exp{−0.5 · u2}|∞u=t

]
=

φ(t)

1− Φ(t)

E(L2|Y = 1) = E(L2|L > t) =

∫∞
t u2φ(u)du

1− Φ(t)
=

1

K

[
−φ(u)u|∞u=t +

∫ ∞
t

φ(u)du

]
=

=
tφ(t) + (1− Φ(t))

1− Φ(t)
= 1 +

tφ(t)

1− Φ(t)
.

Cov(L, Y ) = E(Y L)− E(Y )E(L) = P(Y = 1)E(L|Y = 1) = K
φ(t)

K
= φ(t).

Cor(L, Y ) =
φ(Z1−K)√
K(1−K)

.

In twins studies, we can still use MZ and DZ twins to estimate the observed-level heritability
using the same formula:

Ĥad,obs = 2(r(MZ)− r(DZ)).

The question is, what is the connection between Had,obs and σ2g = Had,liability?
This turns out to be a difficult problem, which we will get back to later. For now, let’s deal with
an easier problem.

Assume we observe G, and therefore can estimate Cor(Y,G) — can we use this to estimate
σ2g = Cov(L,G)? The famous result which addresses that is by Dempster and Lerner (1950), for
which we need to derive some additional formulas:

E(G|L > t) = σ2g
φ(t)

K
⇒ Cor(Y,G) = σg

φ(t)K

K
√
K(1−K)

=
σgφ(t)√
K(1−K)

.
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Therefore, we can conclude:

H2
l = σ2g = Cor2(Y,G) · K(1−K)

φ(t)2
.

For rare diseases (K small), we have φ(Z1−K) ≈ K, and therefore H2
l >> Cor2(Y,G) = H2

obs, in
other words: the heritability is much bigger on the unobserved liability scale than on the observed
scale.

Thus, a methodology which arises;

1. Somehow estimate “heritability”= Cor2(Y,G) on the observed scale

2. Perform the transformation to transform it to the liability scale

This approach was adopted by Lee et al. (2011), who used the LMM approach, meaning they
assumed (for absolutely no good reason) the model (1) for the 0/1 phenotype:

Y√
K(1−K)

|Z,X ·∼ N(Xβ,Gσ2g + In(1− σ2g)),

then in that model, estimated Ĥ2
obs = σ̂2g , and applied the Depmster-Lerner correction:

Ĥ2
l = Ĥ2

obs ·
K(1−K)

φ(t)2
.

Surprisingly(?), this approach generally gives pretty good (unbiased) estimates of H2
l in simulations.

An equally unsubstantiated approach uses twins to estimate H2
obs and applies the same correc-

tion.

These are both fundamentally unsubstantiated because there is no reason to assume additivity
between G and E on the observed scale, which is fundamental to the formulas we derived. A second
(major?) concern for the Lee et al. method is that normality is impossible here by definition, since
Y ∈ {0, 1}.

Dealing with case-control sampling

Assume now that in addition, we perform case-control sampling. That is now, we assume:

• L = G+ E as before

• Y is not taken randomly from the population (where P(Y = 1) = K), but from a “rebalanced”
population, where P(Y = 1) = P >> K.

In this setting, many interesting and surprising changes occur. We will discuss them the next
time.
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