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The genome of an admixed individual represents a mixture of alleles from different ancestries. In the United States, the two
largest minority groups, African-Americans and Hispanics, are both admixed. An understanding of the admixture
proportion at an individual level (individual admixture, or IA) is valuable for both population geneticists and
epidemiologists who conduct case-control association studies in these groups. Here we present an extension of a
previously described frequentist (maximum likelihood or ML) approach to estimate individual admixture that allows for
uncertainty in ancestral allele frequencies. We compare this approach both to prior partial likelihood based methods as well
as more recently described Bayesian MCMC methods. Our full ML method demonstrates increased robustness when
compared to an existing partial ML approach. Simulations also suggest that this frequentist estimator achieves similar
efficiency, measured by the mean squared error criterion, as Bayesian methods but requires just a fraction of the com-
putational time to produce point estimates, allowing for extensive analysis (e.g., simulations) not possible by Bayesian
methods. Our simulation results demonstrate that inclusion of ancestral populations or their surrogates in the analysis is
required by any method of IA estimation to obtain reasonable results. Genet. Epidemiol. 28:289–301, 2005. & 2005 Wiley-Liss, Inc.
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INTRODUCTION

An admixed population arises when mating
occurs between individuals from reproductively
isolated ancestral populations. Historically,
anthropologists and population geneticists have
focused on estimating admixture composition at a
group level. For example, using 12 serummarkers,
Long [1991] estimated 14% European admixture
among African-Americans from Claxton, Georgia.
Numerous other studies focusing on African-
Americans and Hispanics have reported similar
types of results. Recently, several Bayesian or
coalescent-based approaches have been proposed
to estimate ancestry proportions in a population,
which incorporate into the likelihood function
effects of genetic drift and other evolutionary
forces [Chikhi et al., 2001; Wang, 2003].
On the other hand, it has become increasingly

recognized that admixture estimation is also

important on an individual level [Shriver et al.,
1997; Ziv and Burchard, 2003]. A recent article by
Falush et al. [2003] illustrates some of the
important roles that IA can play in answering
fundamental scientific questions. One important
example is in genetic association studies: control-
ling the admixture fraction at an individual level
is likely to be more efficient than at a group level
particularly when one needs to adjust for exogen-
ous risk factors. Furthermore, this task has become
far more feasible with the development of high
throughput genotyping technologies: as we can
now genotype many markers at a low cost, more
accurate estimation of IA is now practical.
An early approach to estimating IA can be

found in Hanis et al. [1986], in which the authors
envisioned that IA would become useful in
disease association studies as abundant DNA
markers became available. However, their ap-
proach assumes that ancestral allele frequencies
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are known a priori, and the only parameter to be
estimated is IA. In practice, these ancestral
frequencies are often estimated based on a small
number of individuals, and therefore are subject
to large sample errors.
More recently, a Bayesian approach, which uses

unlinked genotypes to infer population substruc-
ture, was implemented via Markov Chain Monte
Carlo (MCMC) methods in a program, STRUC-
TURE [Pritchard et al., 2000]. Falush et al. [2003]
extended the implementation to accommodate
linked markers. Compared to the approach of
Hanis et al. [1986], STRUCTURE has the advan-
tage that the ancestral allele frequencies are
inferred using information on both ancestral and
admixed individuals. Although the original focus
of this approach was to identify discrete clusters
roughly corresponding to subpopulations, it can
also be applied to an admixture model. Applica-
tions of STRUCTURE in population genetic
analyses can be found in Rosenberg et al. [2002]
and Bonilla et al. [2004], among many others.
Hoggart et al. [2003] identified several weaknesses
in STRUCTURE and proposed additional Baye-
sian MCMC-based solutions that solve some of
these problems. However, at least two thorny
issues plague STRUCTURE and other MCMC
algorithms as a genomic control approach: reliable
assessment of convergence and sensitivity of
parameter estimates to prior distributions of
model parameters.
An additional consideration in the MCMC

implementations of the Bayesian approach is that
they are extremely computationally intensive,
particularly when compared to a frequentist
method. In this report, we describe a new
approach to maximum likelihood estimation that
extends the prior work of Hanis et al. [1986]; two
different implementations for computing these
maximum likelihood estimates (MLE) of IA are
given. While the likelihood function we consider
resembles that in Hanis et al. [1986], we consider
both ancestral allele frequency and IA as un-
known parameters. To distinguish the two ML
methods, the rest of the report will refer to the
approach of Hanis et al. [1986] as the partial ML
estimator, since the estimated ancestral allele
frequencies are plugged into the likelihood func-
tion as known parameters. The proposed method
will be referred to as the full ML estimator, or
simply the MLE. As with STRUCTURE, the full
ML estimator allows ancestral allele frequencies to
be estimated using both ancestral and admixed
individuals. We also construct bootstrap confi-

dence intervals for IA estimates. Although aspects
of our implementation bear close resemblance to
the Bayesian MCMC algorithms of both Pritchard
et al. [2000] and Hoggart et al. [2003], it is actually
based on a philosophy more similar to Hanis et al.
[1986]. We view IA as an unknown but fixed
parameter, which can be computed precisely if
one can observe the ancestry of each nucleotide in
a person’s genome. In practice, this quantity
cannot be directly computed because most alleles
are only partially informative regarding their
ancestral origins and because of the finite number
of markers genotyped.
We demonstrate that the ML estimator we

derive offers a number of significant advantages.
First, under realistic circumstances it provides
comparable efficiency to the Bayesian approach,
yet requires only a fraction of the computation
time. Second, under some conditions involving
small number of ancestors and markers, the MLE
produces less biased estimates than Bayesian
approaches. Third, because it is likelihood based,
it lends itself easily to questions of study design,
for example marker choice. We provide some
examples in this regard that support and comple-
ment prior findings of Rosenberg et al. [2003] and
Pfaff et al. [2004]. Finally, we show that our full
maximum likelihood estimator is less biased than
the partial ML estimator when the populations
used to define the ancestral groups are imprecise.

METHODS

MODEL

In this report, a person’s individual admixture
fraction (IA) is represented by a vector, Qi¼(qi1, y,
qiK), in which each coordinate corresponds to the
probability that a randomly sampled allele from
individual i originates from a specific ancestral
population, k. We assume a simple population
model, in which a known number of ancestral
populations contribute to the admixed group of
interest. No pedigree information is available. The
genotype data consist of I0 individuals from the
admixed group, as well as IK subjects from each of
the K ancestral populations. For these latter K
groups, we would in theory obtain DNA samples
from the founding ancestors who contributed to
the admixed population. Clearly, this is imprac-
tical. Instead, we use as proxies contemporary
populations whose ancestors were closely related
to the true ancestral populations. These indivi-
duals will be referred to as pseudo-ancestors in
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subsequent sections. We assume that all

I¼I0+I1+y+IK individuals are genotyped at the
same set of M markers, although in practice each
admixed individual and pseudo-ancestor may
only be genotyped at a subset of the markers.
Our goal is to estimate IA for the admixed
individuals, Qi¼(qi1, y, qiK), (I¼1, y, I0).
Determining the appropriate number of ances-

tral populations, K, is related to the long-standing
problem of estimating the number of clusters in a
mixture. However, as we discuss later, in the types
of applications we intend it may be impractical to
determine the number of ancestral populations
from the genotype of admixed individuals alone.
Moreover, the notion of ancestral populations is
not well defined. For the present study, we focus
on gene flow among continentally separated
populations. For example, we think of African-
Americans as a group with mixed European and
African ancestry. Therefore, contemporary Eur-
opean Americans and West Africans are included
in the sample, whenever possible, to represent the
ancestral populations of African-Americans. The
effect of genetic drift is ignored in the present
method. One potential approach to model the
divergence between the true and the pseudo-
ancestral populations is to introduce additional
hyper-parameters [Patterson et al., 2004]. Diag-
nostic procedures for detecting inappropriate
pseudo-ancestors are under development. Finally,
we assume that in the ancestral populations, there
is neither Hardy-Weinberg disequilibrium (depen-
dency between two alleles) at individual loci nor
linkage disequilibrium between loci. In the ad-
mixed group, we assume Hardy-Weinberg equili-
brium conditioning on the admixture fraction.
Let Gimaði ¼ 1; . . . ; I;m ¼ 1; . . . ;M; a ¼ 1; 2Þ be an

allele at marker m in individual i. Assume there
are Lm alleles (LmZ2) at marker m. Denote the
allele frequency of marker m in the kth ancestral
population as ðpm1k; . . . ; pmLmkÞ: In describing our
method, we treat the pseudo-ancestors as indi-
genous. In other words, for an individual from the
knth ancestral group,

qik ¼
1 if k ¼ k�

0 otherwise
;

�
and IA are estimated for i ¼ 1; . . . ; I0 only. When
the context is clear, we use G to denote the
collection of all genotypes. Similarly, we will
use the short-hand notation P and Q to denote
the collections of ancestral allele frequencies
and admixture fractions, respectively. The log

likelihood function can be written as

‘ðGjP;QÞ ¼
XI

i¼1

XM
m¼1

X2
a¼1

XLm
l¼1

1ðGima ¼ lÞ logðrimlÞ:

ð1Þ

where 1 is the indicator function and

riml ¼
XK
k¼1

pmlkqik ð2Þ

is the frequency of allele l at marker m given the
IA of person i. This likelihood function models the
ancestries of all alleles as independent. In the
initial generations after admixing, dependency in
ancestry can be high even among unlinked
markers. Subsequently, correlation in ancestry
decays as a result of independent segregation of
chromosomes and recombination between linked
markers. In practice, the lack of linkage disequil-
brium (LD) between markers can often be taken as
an indication that the correlation in ancestry
between alleles is weak, and thus the likelihood
function in (1) holds approximately. However, we
did evaluate implications of this assumption of no
LD as described below.
The next section describes two algorithms for

computing the maximum likelihood estimates
(MLE) of P and Q. The first algorithm computes
the MLE by a Newton-Raphson method in two
stages. It is computationally more efficient than
the second algorithm, and it is easy to implement
in situations where only a small number of
ancestral populations are present (K is small),
and where only a few alleles are observed at each
marker (L is small). Applicable in a more general
setting and numerically more stable, a second
implementation uses the EM algorithm [Dempster
et al., 1977]. We also describe a bootstrap method
for assessing the uncertainties.

A TWO-STAGE NEWTON-RAPHSON
ALGORITHM

This algorithm is motivated by the following
observation: given Q, the ancestral allele frequen-
cies of different markers, P, are orthogonal to one
another. Likewise, given P, Q are independent
vectors and can be estimated following Hanis et
al. [1986]. Thus, the dimensionality of the estima-
tion problem is greatly reduced if we fix either P
or Q. A two-stage algorithm, which iteratively
estimates P and Q, is outlined in Algorithm 1.
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Algorithm 1. A Two-stage Newton-Raphson
Algorithm.
Step 0: Randomly assign initial values, P(0) and

Q
ð0Þ
i ði ¼ 1; . . . ; I0Þ, subject to the constraintsPLm
l¼1 pmlk ¼ 1 and

PK
k¼1 qik ¼ 1:

Step 1: Compute Q(n) by solving the score
equations with respect to Q, treating P as known:

qðGjQ;PÞ
qqik

�����
�����
P¼Pðn�1Þ

¼ 0 ð3Þ

for i ¼ 1; . . . ; I0; k ¼ 1; . . . ;K � 1:
Step 2: Compute P(n) by solving the score
equations with respect to P, treating Q as known:

qðGjQ;PÞ
qpmlk

�����
�����
Q¼QðnÞ

¼ 0 ð4Þ

for m ¼ 1; . . . ;M; l ¼ 1; . . . ; Lm � 1; and k ¼ 1; . . . ;K:
Iterate Steps 1 and 2 until convergence.
In Step 1, the estimation of Q amounts to

solving I0 independent systems of equations, each
corresponding to an admixed individual and
having K�1 unknown variables. The solutions to
all systems are constrained in the region: OQi ¼
fðqi1; . . . ; qiðK�1ÞÞ : qik 2 ½0; 1�;

PK�1
k¼1 qik � 1g: Simi-

larly, the estimation of P in Step 2 amounts to
solving M independent systems of equations, each
corresponding to a marker and having ðLm � 1Þ�K
unknown variables. The solutions to all systems
are constrained in the region: OPmk

¼ fðpm1k; . . . ;

pmðLm�1ÞKÞ : pmlk 2 ½0; 1�;
PLm�1

l¼1 pmlk � 1; k ¼ 1; . . . ;Kg:
Since both OQ and OP are convex sets and the log
likelihood function, (1), with respect to Q and P is
concave, the Newton-Raphson method is an
appropriate and efficient root-searching algo-
rithm. The convergence is reached when each
score equation in (3) and (4) is either solved or is
proven to have no solution. In the latter case, the
MLE is on the boundary.
Although in theory this two-stage Newton-

Raphson algorithm applies to arbitrary numbers
of K and L, the implementation is more difficult as
K or L grow. Additionally, because of the need to
compute and to invert the information matrix, the
Newton-Raphson algorithm may become numeri-
cally unstable. Therefore, we developed an alter-
native approach that is especially suitable for
problems with large values of K or L.

AN EM ALGORITHM

To implement the EM algorithm, we introduce
an unobservable variable, Zima 2 f1; . . . ;Kg; which

corresponds to the ancestral origin of allele Gima.
The augmented log likelihood function of (G, Z) is:

lðG;ZjP;QÞ ¼
XI

i¼1

XM
m¼1

X2
a¼1

XLm
l¼1

XK
k¼1

1ðGima ¼ l;Zima

¼ kÞlogðpmlkqikÞ:
If Z were observable, it would be straightforward
to compute the MLE of P and Q directly.
Specifically, Q is estimated by the empirical
distribution of Z, while P is estimated by counting
alleles originated from a given population. Treat-
ing Z as missing variables, the maximization step
of our EM algorithm computes the MLE of P and
Q conditional on the current expectation of Z:

E
ðnÞ
imak ¼ E½1ðZima ¼ kÞjPðnÞ;QðnÞ;G�:

The variables, E, are updated in the expectation
step. The EM algorithm for computing the MLE of
P and Q is outlined in Algorithm 2.

Algorithm 2. An EM Algorithm.
Step 0: Assign initial values for E

ð0Þ
imak. If an indivi-

dual is from the kn-th pseudo-ancestral group, let

E
ð0Þ
imak ¼

1 if k ¼ k�

0 otherwise

�
:

For the admixed individuals, the initial values of E
are randomly assigned as long as each person’s IA
vector sums to 1.
Maximization Step. Compute P(n) by:

p
ðnÞ
mlk ¼

PI
i¼1

P2
a¼1 1ðGima ¼ lÞEðn�1Þ

imakPI
i¼1

P2
a¼1 E

ðn�1Þ
imak

;

and compute Q(n) by:

q
ðnÞ
ik ¼

PM
m¼1

P2
a¼1 E

ðn�1Þ
imak

2M
:

Expectation Step. Expectation of the missing
variables is computed by Bayes rule:

E
ðnÞ
imak ¼ Eð1ðZima ¼ kÞjG;PðnÞ;QðnÞÞ

¼
p
ðnÞ
mlkq

ðnÞ
ikPK

k0¼1 pðnÞmlk0q
ðnÞ
ik0

:

Iterate Steps 1 and 2 until convergence.
Convergence is declared when, in the successive

iteration, the differences in the estimates of Q and
P fall below a small threshold. In simulations
reported below, we set the threshold to be 10�9; in
most cases, convergence is achieved in less than
200 iterations. As expected, the EM algorithm
converges to the same solutions as the two-stage
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Newton-Raphson algorithm. We note that Z is also
introduced in Pritchard et al. [2000]. Rather than
computing the expectation of this unobservable
variable, STRUCTURE samples from the condi-
tional distribution, PðZjG;PðnÞ;QðnÞÞ:

BOOTSTRAP CONFIDENCE INTERVAL

The sample variance of the IA estimates can be
estimated using the inverse of the Fisher informa-
tion matrix. A confidence region of IA can be
constructed on the basis of asymptotic normal
theory of the MLE. However, there are at least two
reasons for preferring a bootstrap approach. First,
with the increase in K, M, and the number of
observed alleles at each marker, the dimension of
the information matrix grows rapidly. We again
face the numerical difficulty of inverting a large
matrix. More importantly, the sampling distribu-
tion of the MLE of both P and Q are likely to be
asymmetric, especially when the point estimate
falls close to 0 or 1.
In contrast, a bootstrap approach is simple to

implement and encounters no numerical difficul-
ties. Because it is based on the empirical distribu-
tion, a bootstrap confidence interval has a second-
order accuracy, and can correct for bias and
skewness. We construct the bias-corrected and
accelerated (BCa) interval following Efron and
Tibshirani [1993]. We observe through simulation
that resampling markers alone or individuals
alone lead to underestimation of the sampling
error; thus, each bootstrap sample is obtained by
sampling both individuals and markers with
replacement. Individuals are resampled to main-
tain the numbers of individuals in each of the
admixed and the ancestral groups. IA of an
admixed individual is then estimated using the
bootstrap sample. IA of an admixed individual,
who is not sampled in a bootstrap sample, is
estimated as if the individual is present; his/her
genotype does not contribute to the estimation of
the ancestral allele frequencies.

SIMULATION MODELS

We use simulated data to evaluate the perfor-
mance of the proposed likelihood-based ap-
proach. Our first three simulations use available
empirical data and ignore the effect of genetic
drift. Genotype data are simulated under an ideal
condition in which the pseudo-ancestral groups
have the identical allele distributions as the true
ancestral populations. The last dataset is gener-
ated using a Wright-Fisher model under neutrality

[Nei, 1987]. In all simulations, the number of
ancestral populations, K, is known without error.
In a recent study, 4,833 SNPs were genotyped by

the SNP Consortium in a panel that includes 30
African-Americans and 30 European Americans
[Matise et al., 2003; Clark et al., 2003]. The absolute
allele frequency difference, referred to as the d-
values, between these two samples is shown in
Figure 1, and is used to approximate the allele
frequency difference between our simulated an-
cestral populations. On the one hand, the small
number of individuals genotyped tends to ex-
aggerate the upper tail of this distribution; on the
other hand, since the African-American group
contains European admixture, the d-values we
observe should be smaller than that between an
indigenous African population and the European
American population. Overall, the empirical dis-
tribution in Figure 1 may be a reasonable
approximation of the genetic differentiation be-
tween Africans and Europeans.

Simulation 1: SNP Data. The first simulation
aims to compare efficiency of the full MLE to that
of the Bayesian estimator implemented in the
program, STRUCTURE. The sample consists of
500 admixed individuals, and 250 individuals
from each of the two ancestral populations, X and
Y. Because there are only two ancestral popula-
tions, the IA vector is determined by a scalar
representing, say, the contribution of population Y.
We model the underlying distribution of IA in the
admixed group as a mixture of two distributions:
with a probability of 0.2, this fraction is sampled
from a uniform distribution, U[0.1, 0.9]; with a
probability of 0.8, this fraction is sampled from a
normal distribution (truncated at 0 and 1), with a
mean of 0.15 and a standard deviation of 0.05.
Such a distribution is chosen to mimic the
estimated IA distribution in African-Americans
(unpublished results). In the simulated data, the
mean admixture fraction is 0.21. To generate allele
frequencies, we assume that 200 SNPs have been
pre-selected from the SNP Consortium panel.
Further, these SNPs are chosen to have a mini-
mum d-value of 0.30, and represent the top 15%
of all SNPs. For each marker, conditioning on the
d-value, the allele frequencies in the ancestral
populations are simulated from a uniform dis-
tribution. Conditional on a person’s IA, genotypes
are simulated assuming independence among all
alleles. For comparison, we report IA estimates
obtained by program STRUCTURE (Version 2.1),
with a run consisting of 10,000 burn-in iterations
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followed by 50,000 further iterations and using
default values for all other parameters. The length
of the iterations is chosen following the African-
American example in Falush et al. [2003].
As a measure of the efficiency of an estimator

we use the root mean squared error (RMSE),
which, in our setting, can be approximated using
the simulated samples as:

dRMSERMSE ¼ 1

I0

XI0
i¼1

ðbqiqi � qiÞ
" #1

2

;

where bqiqi and qi are the estimated and true IA,
respectively.

Simulation 2: Microsatellite Data. In a second
simulation experiment, we compare the informa-
tiveness of SNP markers to that of microsatellite
(short tandem repeat polymorphism, or STR)
markers. To facilitate comparison, the same uni-
form-normal mixture model used in the previous
simulation was adopted to generate the IA of 500
individuals. The pseudo-ancestral groups again
consist of 250 individuals from each ancestral
population, and all individuals are genotyped at
200 STR markers. The ancestral allele frequencies
of the microsatellites are sampled from the
empirical distribution of 284 STR markers, esti-

mated using a European group and a sub-Saharan
African group from the World Human Diversity
Panel [Weber and Broman, 2001; Cann et al., 2002;
Rosenberg et al., 2002].

Simulation 3: A Case of Less Information. The
next simulation experiment studies the efficiency
of the IA estimate when the information in the
data is less than the previous two simulations for
two reasons: first, only a small number of pseudo-
ancestors are available; second, the markers are
only moderately informative and are small in
number. As with the previous two experiments,
the IA of an admixed individual is sampled from
the normal-uniform mixture distribution, and the
admixed group consists of 500 individuals. The
pseudo-ancestors consist of 20 individuals from
the ancestral population, which contributed more
to the admixed group, and 60 individuals from the
other ancestral population. Sixty SNP markers are
selected to have a d-value of at least 0.2. The
averaged d-value in the simulated data is 0.33.

Simulation 4: Effects of LD and Genetic Drift.
All simulations above were performed ignoring
the effects of genetic drift. One consequence of
genetic drift is that the allele frequencies of
pseudo-ancestors may deviate from those among
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Fig. 1. Distribution of d-value for 4833 SNPs between African-Americans and Europeans American. SNPs were genotyped by the SNP

Consortium. The panel includes 30 African-Americans and 30 European Americans. The mean d-value is 0.16, and median 0.12.
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the true ancestors. Such difference could concei-
vably cause bias in the IA estimates. To examine
the robustness property of our IA estimate in the
presence of genetic drift, the final simulation
experiment we present incorporates a simple
evolution model, which roughly corresponds to
the intermixture model in Long [1991] and
scenario V in Falush et al. [2003]: a progenitor
population gave rise to two reproductively iso-
lated parental populations (denoted as X and Y,
respectively) 1,010 generations ago. A one-time
admixing occurred 10 generations between X and
Y before the present generation, resulting in a
mean admixture fraction of 0.2. The effective
population sizes of the progenitor population, of
X, of Y, and of the admixed group are 7,500, 5,000,
5,000, and 2,000, respectively, and each remains
constant in time. Genealogies are generated
according to coalescent theory [Kingman, 1982]
and using the program MS [Hudson, 2002]. Each
genealogy represents a chromosomal segment of
5 cM. Nucleotide sequences are then generated
under Kimura’s two-parameter model [Nei, 1987]
using the program SEQ-GEN [Rambaut and
Grassly, 1997] Thus, each genealogy gives rise to
a cluster of linked SNPs. In this fashion, we
generate 120 unlinked chromosomal segments,
each segment harboring between 1–8 SNPs. In
total, the dataset contains 421 SNPs; the median
distance between neighboring markers on the
same segment is 0.99 cM. The mean allele
frequency difference between populations X and
Y (at the time of sampling) is 0.15. A dataset is
formed by randomly sampling 500 haplotypes
(250 individuals) from populations X and Y and
1,000 haplotypes (500 individuals) from the
admixed individuals.

Full Likelihood Versus Partial Likelihood Esti-
mates. We use a subset of the same simulated data
described above (10 generation admixing time) to
compare the full ML method with the partial ML
of Hanis et al. [1986]. To do so, we randomly select
100 SNP markers and 50 pseudo-ancestors from
each of the two ancestral populations, as well as
500 admixed individuals. To emulate a situation in
which the pseudo-ancestors deviate from the true
ancestors, 5% of the alleles in each of the pseudo-
ancestral individuals are randomly selected and
switched from one SNP allele to the other. We
estimate IA using both the method of Hanis et al.
[1986], which computes the ancestral allele fre-
quencies from the pseudo-ancestors only and
considers them as fixed values, as well as the full

ML method described above. Recall that in this
simulation, the true IA for all individuals is near 0.2.

RESULTS

SIMULATION 1: SNP DATA

The results of Simulation 1, which compared the
estimation of IA using STRUCTURE and the EM
algorithm, are shown in Figure 2a. In this
example, the two methods produce nearly iden-
tical estimates (correlation coefficient r40.99).
The RMSE for the estimates using STRUCTURE
is 0.052; the corresponding quantity using the EM
algorithm is 0.053. Both estimates are nearly
unbiased. Figure 2b shows the EM estimates along
with the 90% BCa intervals for the EM algorithm,
using 500 bootstrap samples. The coverage prob-
ability is 89.4%; that is, the true IA of 447 out of the
500 admixed individuals fall within the estimated
confidence interval. The median length of the BCa
interval is 0.17. The 90% credibility intervals
produced by STRUCTURE have similar coverage
probability (89%) and median interval length
(0.17). We have also analyzed this set of data
using program ADMIXMAP, which implements
the MCMC approach described in Hoggart et al.
[2003]. Estimates obtained from ADMIXMAP are
highly correlated with both the MLE and the
structure estimates. To produce the point esti-
mates of IA using the EM algorithm on an intel 2-
GHz processor required less than 1 min, bootstrap
analysis took 3.5 h. The analysis using STRUC-
TURE required 5 h. Because the primary focus of
ADMIXMAP is association analysis, the program
includes computational components that are un-
necessary for the sole purpose of the inference on
IA. Thus, the computation time required by
ADMIXMAP is substantially longer (17 h), but
may not be comparable to that of STRUCTURE or
the EM algorithm. The performance of the three
approaches is summarized in Table I; clearly this
comparsion is somewhat arbitrary, since the
computation time depends on the length of the
MCMC chains (for STRUCTURE and ADMIX-
MAP) and the number of bootstrap samples (for
the EM algorithm). In any event, for producing an
IA estimate, MLE required at least 300 times less
computational time than the Bayesian approach
implemented in STRUCTURE.

Importance of Ancestral Populations. A question
of concern is the importance of the pseudo-
ancestral groups. It has been pointed out that the
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ancestral populations are unidentifiable unless
some of the admixed individuals are nearly
‘‘pure,’’ that is, their genomes are derived pre-
dominantly from a single ancestral population
[Pritchard et al., 2000]. How many and how close
to indigenous these individuals need to be in
order to identify the ancestral populations, how-
ever, has not been investigated. To answer this
question, we ran STRUCTURE using the 500
admixed individuals alone. Among four indepen-
dent runs of STRUCTURE on the same data, the
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Fig. 2. Results of simulation 1: SNP data. a: Comparison of IA estimates using program STRUCTURE (x-axis) to the MLE (y-axis). b:

MLE of IA (points) with BCa intervals (vertical lines). Simulated data includes 500 admixed individuals and 250 pseudo-ancestors from
each of the two ancestral populations. Subjects are genotyped at 200 SNPs with a minimum d-value 0.3 (mean d-value is 0.4).

TABLE I. Results of Simulation 1 (SNP data, including
pseudo-ancestors) using three approachesa

STRUCTURE ADMIXMAP EM

Bias 0.011 0.004 0.001
RMSE 0.052 0.050 0.053
Length of CI 0.17 0.16 0.17
Coverage probability (%) 89 88.8 89.4

aA description of the data can be found in the caption of Figure 2.
Bias is defined as mean ðbqiqi � qiÞ; Length of CI denotes the median
length of the 90% confidence (or credibility) intervals. Coverage
probability refers to that of the 90% intervals.
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mean estimated IA was 0.4 three times and 0.07
once. Recall that the true IA has a mean of 0.21.
Allowing the two parental populations to have
unequal prior admixture proportions (different
alpha parameter values in the Dirichlet distribu-
tion) does not ameliorate the bias. These results
suggest that the MCMC algorithm fails to con-
verge. The estimates, however, are highly corre-
lated with the true value (r¼0.94). The EM
algorithm estimated a biased mean IA of 0.35,
while a run of ADMIXMAP reports a mean IA of
0.07. It is worth noting that in the admixed
sample, 12% of the 500 individuals have an IA
less than 0.1, and 2.2% have an IA above 0.8. Thus,
this example demonstrates that a significant
number of pseudo-ancestors or individuals with
extreme IA values are required for any of the
existing approaches to perform well. On the other
hand, in situations where the underlying IA
distribution is sufficiently broad, our simulations
indicate that just a handful of pseudo-ancestors
are required to achieve nearly unbiased estimates.

SIMULATION 2: MICROSATELLITE DATA

In simulation 2, we compared relative informa-
tion content of SNPs versus microsatellites. In this
simulation, STRUCTURE and ML again produce
essentially identical estimates. The MLE of IA is
nearly unbiased, and the coverage probability of
the BCa is 89%. The RMSE is 0.075 and the median
length of the BCa interval is 0.23, both slightly
greater than the corresponding quantities in the
SNP simulation (Simulation 1). Therefore, under
comparable conditions, pre-selected SNPs with d-
values of at least 0.3 appear as informative as
random microsatellite markers. These results are
largely consistent with those previously obtained
by Rosenberg et al. [2002] and Pfaff et al. [2004].

SIMULATION 3: A CASE OF LESS
INFORMATION

Here we considered the impact of using a small
number of ancestral individuals and SNPs that are
only moderately informative. The MLE and
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Fig. 3. IA estimates using less informative markers. Data set includes 20 and 60 individuals from the two ancestral populations,

respectively, and 500 admixed individuals. The true IA has a mean of 0.237. SNP markers are chosen to have a mean d-value of 0.33. Each
individual is genotyped at 60 SNPs.
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STRUCTURE estimated IA are plotted against
true IA in Figure 3. The simulated IA has a mean
of 0.237; our MLE of IA has a mean of 0.251. The
RMSE is 0.11. Although the coverage probability is
acceptable (87%), the 90% confidence intervals are
very wide with a median length of 0.31. Further,
assuming perfect knowledge of the true ancestral
allele frequencies does not improve the estimates
substantially. Thus, the poor result is largely
attributed to the small number and lack of
informativeness of the SNPs used. In comparison,
STRUCTURE estimates appear to have an upward
bias, with a mean of 0.37. The RMSE of the
STRUCTURE estimate is 0.17. Allowing the two
parental populations to have unequal prior
admixture proportions (different alpha parameter
values in the Dirichlet distribution), the mean
estimated IA from STRUCTURE was 0.147, this
time indicating a downward bias. Thus, it appears
that in at least some circumstances of modest
information, MLE provides unbiased IA estimates
whereas STRUCTURE does not.

SIMULATION 4: EFFECTS OF LD AND GENETIC
DRIFT

In this simulation, we examined the impact of
genetic drift or misrepresentation of ancestral

allele frequencies in the pseudo-ancestors used
in the analysis. Figure 4 compares STRUCTURE
estimates of IA (assuming the correct linkage
map) to the MLE (ignoring linkage). Both esti-
mates appear unbiased and are highly correlated
(r¼0.98). The RMSE for the EM estimates is 0.071,
while that for the STRUCTURE estimates is 0.066.
Furthermore, STRUCTURE estimated the time
since admixing as 8.3 generations. In additional
simulations, we amplified the magnitude of
genetic drift by reducing the population sizes or
by lengthening the time since admixing. Results
from these simulations indicate that both the
STRUCTURE and EM algorithm produce un-
biased estimates when a moderate number of
markers are included.

Linkage Disequilibrium Among Markers. In this
simulation, markers from the same chromosomal
region are linked, with an average intermarker
distance of 0.99 cM; as a result, the ancestry of
alleles at neighboring markers may be correlated.
On the other hand, the likelihood function in (1)
ignores the dependency between linked markers
and the bootstrap approach treats all markers as if
they were independent. Therefore, we expect the
BCa intervals to under-estimate the variability of
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Fig. 4. Comparison of STRUCTURE (x-axis) and MLE (y-axis) estimates of IA for the data of Simulation 4. IA for all individuals is near

0.2. Simulated data include 500 admixed individuals and 250 pseudo-ancestors from each ancestral population; all individuals are
genotyped at 421 SNP markers. The average d-value between the two ancestral populations is 0.15.
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the IA estimates; that is, the confidence interval
tends to be too narrow. For the data presented in
Simulation 4, the coverage probability of the 90%
BCa interval is 0.86 suggesting weak LD in the
simulated data. While the simulation parameters
were chosen to approximate the population
history of African-Americans [Falush et al.,
2003], Simulation 4 is potentially unrepresentative
in two important aspects. First, necessitated by the
programming and computational complexities in
generating a large recombination graph that
represents a genealogy, the 120 chromosomal
regions in Simulation 4 were generated indepen-
dently. As a result, the majority of marker pairs in
the simulated data are unlinked. In contrast, the
SNPs in the map of Smith et al. [2004] cover the
genome in a continuous fashion such that many
pairs are linked. Therefore, admixture linkage
disequilibrium (ALD) decays faster in the simu-
lated data. Second, the magnitude of ALD
depends on the delta values of the markers. In
the current simulation, many markers have
relatively small delta values; in contrast, the map
of Smith et al. [2004] focused on more informative
markers. Therefore, we also consider here a far
more extreme (and unrealistic) scenario in which
admixing occurred 3 generations ago and markers
are screened to have a delta value of at least 0.3. In
this simulation, the coverage probability of 90%
BCa intervals falls to 0.71, demonstrating that the
likelihood function in (1) is invalid when most
markers are in significant LD. In contrast, by
incorporating the correct linkage information, the
90% credibility interval constructed by STRUC-
TURE achieves a coverage probability of 88%.
Linkage and LD among markers is modeled in the
algorithms proposed in Falush et al. [2003],
Hoggart et al. [2003], Zhu et al. [2004], and
Patterson et al. [2004]. However, while the
assumption of marker independence in the ML
approach can lead to underestimation of the
variability under extreme and unrealistic condi-
tions, the above results also indicate that the effect
may not be very severe in situations likely to be
encountered in practice (e.g., studying African-
Americans or Hispanics).

Full Likelihood Versus Partial Likelihood Esti-
mates. Here we compared the full versus partial
likelihood estimates of IA using the simulated
data (admixture 10 generations ago), which
allowed for random deviations of the pseudo-
ancestors from the true ancestors as described
above. The partial likelihood method gave a mean

IA of 0.25 while the full ML method still produced
an unbiased estimate (0.20). This illustrates that
allowing the allele frequencies to be estimated
jointly based on both the pseudo-ancestors and
the admixed group can provide a greater level of
robustness, particularly when the pseudo-ances-
tors do not derive precisely from the true ancestral
populations.

DISCUSSION

The main contribution of this report is to
introduce a new, full likelihood based estimator
of IA and to delineate its advantages, and more
generally the advantages of a frequentist ap-
proach, for estimating individual admixture frac-
tions using SNP or microsatellite genotype data.
When computational efficiency and unbiased
estimates are important considerations, our full
likelihood approach is an attractive alternative to
an existing ML estimator [Hanis et al., 1986] as
well as Bayesian MCMC approaches, such as one
implemented in program STRUCTURE. In many
situations, the MLE and Bayesian MCMC ap-
proaches produce similar estimates; no one
method is universally preferable. While the full
range of advantages and disadvantages of the
frequentist versus Bayesian approaches remain to
be worked out, some practical rules of thumb may
be gleaned based on the simulations presented
here.
First, in an information-rich scenario in which

the markers are informative and the ancestral
groups are large and accurate (Simulations 1 and
2), all methods we examined perform well: The
point estimates are nearly unbiased and the
estimated confidence intervals have coverage
probabilities close to the nominal level. Bayesian
MCMC methods, STRUCTURE and ADMIXMAP,
may achieve a marginally smaller root mean
square error (RMSE), but require substantially
longer computer time. This computational differ-
ence can be quite important for computer-inten-
sive applications, for example in simulations.
Second, in an information-poor scenario in

which the markers are only moderately informa-
tive or the ancestral groups are small (Simulation
3), our full ML approach remains unbiased while
STRUCTURE estimates can be substantially
biased. Additional simulations using a small
number of markers and pseudo-ancestors indicate
that STRUCTURE usually produces a slightly
smaller sampling variance compared to the MLE,
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but at the expense of being substantially biased.
The comparison of the RMSE for the two
estimates, therefore, depends on the bias-variance
trade-off [Hastie et al., 2001].
Third, a potential limitation in both the partial

ML and the full ML approaches is the assumption
of independence among markers. However, under
the 10-generation simulation setting we consid-
ered in Simulation 4, the MLE remained unbiased
and the coverage probability of the BCa intervals
was robust because there was only weak LD
among markers. On the other hand, when LD is
stronger (as might happen if admixing has
occurred extremely recently), the full MLE does
underestimate the variability; as a result, the BCa
interval tends to be too narrow. In contrast,
STRUCTURE can incorporate known map infor-
mation and model the LD; in this setting, the
credibility intervals produced by STRUCTURE
should have more accurate coverage probability
than the BCa intervals.
Fourth, a comparison between the full ML

approach we present here to the partial ML
estimator [Hanis et al., 1986] reveals that allowing
the ancestral allele frequencies and IA to be jointly
estimated provides a greater level of robustness
against imprecision in selection of pseudo-ances-
tral groups.
Fifth, our results confirm that microsatellites

are generally more informative than SNPs for
IA estimation, but that pre-selecting SNPs to have
d-values greater than 0.3 achieves comparable
power.
Finally, our simulation results argue for the

importance of pseudo-ancestors. For example, in
estimating continental-level admixture in African-
Americans, Africans from West Africa and Eur-
opean Americans may be appropriate proxies.
In the absence of these pseudo-ancestors, the
ancestral populations may not be identifiable; in
such situations, both Bayesian and frequentist
approaches produce biased estimates. In theory,
the identifiability problem does not arise if a
number of admixed individuals in the study are
almost ‘‘pure’’. However, in practice, we cannot
assume, a priori, that such individuals will be
present. For example, suppose we wish to
estimate European admixture in African-Ameri-
cans using a sample consisting entirely of indivi-
duals who identify themselves as African-
American. It is unreasonable to assume any of
them has no European admixture, nor is it
reasonable to assume any of them has exclusively
European ancestry.

Given the importance of including pseudo-
ancestors in IA estimation, we believe it is
infeasible to estimate the number of ancestral
populations from a sample of admixed indivi-
duals. Furthermore, for the purpose of estimating
continental-level gene-flow, sufficient knowledge
is usually available. For example, African-Amer-
icans are largely an African group receiving
European admixture; Puerto Ricans are typically
a mix of European, Native American, and Afri-
can/African-American [Hanis et al., 1991], while
Mexican/Mexican-Americans are primarily of
European and Native American ancestry with
some African ancestry as well.
With the recent development of high through-

put, array-based technology, it is now affordable
to genotype 10,000–100,000 SNPs simultaneously
[Kennedy et al., 2003]. Systematically genotyping
various indigenous populations using this or
other similar platforms has at least two advan-
tages: first, population-specific allele frequencies
obtained from these studies enable all future
association studies to genotype only the admixed
individuals, which thereby facilitates the control
for IA variation. Second, informative SNPs with
large d-values between populations can be se-
lected to improve the IA estimates in a future
study in which large-scale genotyping is not
practical. For example, Smith et al. [2004] recently
developed a high-density map of informative
markers for admixture mapping in African-Amer-
icans.
While it is tempting to simply use pre-existing

databases for selecting informative markers and
for estimating pseudoancestral allele frequencies,
caution needs to be applied. Selecting SNPs from
major inventories to have large d-values leads to
exaggeration of the allele frequency differences
for those SNPs and distortion of allele frequencies
in the ancestral individuals typed. Therefore,
before such SNPs are used in practice, indepen-
dent samples of ancestral populations need to be
typed for those SNPs to obtain more accurate,
unbiased allele frequency estimates.
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