
Statistical Genetics, Spring 2022

Class notes 5: LD, multiplicity, test statistics

Reminder: Basic questions which have to be addressed in designing GWAS and analyzing
GWAS data:

1. How to select the M loci to sample? (Now somewhat obsolete)

2. How to test for association and determine statistical significance?

3. How to differentiate correlation from causation?

4. Which type of effects are we expecting to find:

(a) Effect of one mutation at a time, independent of others?

(b) Mode: dominant, recessive, additive?

(c) Combination of mutations acting together (interaction/epistasis)?

(d) More generally: which “statistical language” is appropriate to describe the relevant
associations?

There are three critical elements to consider when analyzing GWAS and trying to answer the
above questions:

1. Linkage disequilibrium (LD): Mutations that are close to each other tend to be inherited
together due to non-perfect recombination. Hence if a mutation is associated causally with
the phenotype, its neighbors in the genome will be associated statistically with it as well

2. Stratification: If in studying a disease, all our cases are African, and all our controls are
European, then any genetic difference between Europeans and Africans will be statistically
associated with the disease! So we have to be able to neutralize this, either by careful
sampling, or more likely, by modeling and taking into account stratification in the sampling.

3. Multiplicity: IfM = 106 and we test each locus (column) for association with the phenotype,
we perform 106 hypothesis tests — severe problem of false discovery. The standard solution
in the GWAS community is to perform all tests at level 5× 10−8, implicitly doing Bonferroni
correction for 106 tests. We will discuss this and other strategies in more detail.
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Measures of LD

Assume we have two binary loci, one denoted X with genotypes a,A and Y with b, B. Assume we
are either considering haploid organisms, or more likely, looking at each copy of the genome (so one
diploid organism is two samples). We can describe the joint distribution of the two loci via 2 × 2
table:

X \Y b B Total

a pab paB pa
A pAb pAB pA

Total pb pB

(We can add hats and write p̂ab, p̂aB, . . . to differentiate observed data distributions from theoretical
distributions).

We are interested in understanding whether the sites X,Y are “associated” by LD and how
much. Intuitively this means that by knowing X we have information on Y.

A simple measure: Lewontin’s D: D = pab − papb = −(paB − papB) = . . . = Cov(X,Y ).

Example: MRCA is AB, mutation A→ a, followed by B → b giving:

X \Y b B Total

a 0.3 0.2 0.5
A 0 0.5 0.5

Total 0.3 0.7

For this table D = 0.3− 0.15 = 0.15. However this tree has gone through no recombination!

An alternative measure which respects the phylogenetic order is D′ which is D, normalized to
the range −1 ≤ D ≤ 1 given then marginal distributions of X,Y :

D′ =
D

m(pa, pb, sign(D))
, m =

{
min(pa, pb)− papb if D > 0

papb −max(pa + pb − 1, 0) if D < 0
.

For the example above we would get m = 0.3− 0.15 = 0.15, so not surprisingly D′ = 1.
Claim: For a pair of loci with no recombinations, D′ = 1.

The problem with D′ (to some extent also D): Not really clear how the values relate
directly to the “amount of information X carries on Y.”.

Squared correlation / variance explained r2:

r2 = cor2(X,Y ) =
D2

papApbpB
.
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Recall the interpretation from regression as the “variance explained” by regressing Y on X or X
on Y.

For the example above: r2 = 0.152

0.21×0.25 = 0.42.

r2 and D combine information on:

1. Whether there is recombinations breaking the correlation

2. The “phylogenetic context”, i.e., whether the mutations happened in a similar place in the
tree

r2 ≈ 1 means that both conditions hold – few or no violations of the tree, and similar phylogenetic
context.

Important Note: r2 and D are not monotone decreasing as X,Y move further away along
the genome — recombinations are increasing for sure, but far away mutations can still have similar
phylogenetic context!

Conclusion: If X is causative for some disease, and r2(X,Y ) is big, then Y is likely to also be
associated with the disease only due to this correlation. This should be taken into account:

• What happens if we did not measure X at all, only Y ?

• What should we conclude if we see many associated loci close together: are there indepen-
dent associations, or is it all due to one association and LD? How can we use r2 values to
distinguish?

Statistical testing in case-control GWAS

Given we have collected M loci (say 106 in traditional GWAS), the simplest approach is to look at
the data in case-control GWAS as a collection of M 2× 3 tables:

Genotype AA AG GG Total

Case r0 r1 r2 R
Control s0 s1 s2 S

Total n0 n1 n2 n

The first and most important task is identifying statistical association. Most obvious
solution: Chi-squared test.

• A chi-squared test on the 3× 2 table with 2− df.

• Reduce to a 2 × 2 table by choosing inheritance mode (recessive / dominant). For example,
if we assume A is the risk allele, and mode is dominant, so AA and AG both confer risk, we
get:

with test statistic:

χ2 =
∑
ij

(Oij − Eij)2

Eij

H0, ·∼ χ2
1.
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Observed: Expected:

Genotype AA+AG GG Total

Case r0 + r1 r2 R
Control s0 + s1 s2 S

Total n0 + n1 n2 n

Genotype AA+AG GG

Case R(n0 + n1)/n R(n2)/n
Control S(n0 + n1)/n S(n2)/n

In the 2× 2 case we can alternatively perform a Fisher’s exact (hypergeometric) test.

Concerns and limitations with the Chi squared approach:

1. How can we efficiently test under the assumption that the effect is monontone/additive:
AA < AG < GG in terms of risk?

2. If we only get a p-value, what do we know about the magnitude of the effect? Can use odds
ratios like:

(r0 + r1)/(s0 + s1)

r2/s2
,

but these are separate from the testing

3. Most important: how do we deal with having additional knowledge or assumptions, like:

• That multiple SNPs might have simultaneous effect

• That there are important measured environmental and other effects (smoking for lung
cancer, age) that can increase power or correct stratification

• Specific stratification due to ethnic origin

The obvious solution:
Testing using a regression approach. Can use logistic (or other relevant) regression, for

example fit model of the form:

̂
log

(
P(Y = 1)

P(Y = 0)

)
= β̂0 + β̂1SNP + β̂2X2 + β̂3X3 + . . . ,

where SNP can be encoded as recessive, dominant, additive etc. and X2, X3 can be ethnic origin,
smoking, or even another SNP, etc.
Then we can both estimate the effect of the SNP and test it for significance using standard method-
ology (e.g., Wald tests).

Advantages:

1. Account for possible confounders and stratification variables (testing is for each effect given
all others)

2. Test and estimate at the same time

3. Extensive flexibility in types of variables and types of association that can be covered

4. Interpretation of coefficients as log-odds change
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Dealing with multiplicity in GWAS

Recall the GWAS multiple testing problem:

H0k : θk = 0 , H1k : θk 6= 0 , k = 1, . . . ,K,

where θk is a measure of association of the kth SNP with the phenoytpe. Typical number isK = 106.

The outcome of each test can be denoted by Dk ∈ {0, 1} to denote non-reject or reject decision.
We want to perform the testing in such a way to avoid false discoveries. Denote by R =

∑
k=1K Dk

the total number of null rejections, and by V =
∑K

k=1DkI{H0k}. Then the most common measures
of false discovery are:

FWER = P (V > 0) , FDR = E
(

V

max(R, 1)

)
.

A method for controlling FWER is Bonferroni’s method, which amounts to performing each test
at level α/K, and guarantees FWER ≤ α, while a well known approach for controlling FDR as-
suming the test statistics are independent (or dependent in specific ways) is Benjamini-Hochberg’s
suit of methods.

A common practice in GWAS is to perform all tests at level 5 × 10−8, which corresponds
to a Bonferroni correction to guarantee FWER ≤ 0.05 with 106. Since tests may have complex
dependence due to LD, this can be very conservative, and a common approach is to estimate the
null distribution of the smallest p-values by permutations, where we repeat the following M times:

1. Permute the class labels y1, . . . , yn between the observations

2. Calculate all p values and record the smallest one (or l smallest ones)

Then we can guarantee FWER ≤ α by using the αth quantile of the distribution of smallest p
values as the cutoff for our study.

A common design is a two-stage design, where we perform all K tests on a subset m < n of
our data, apply a much less stringent p-value threshold p < α1 (for example p < 0.001), choosing
some L << K “candidates”, then on the rest n−m of the data (or in a follow-up study) test only

these variants at level α/Kα1
. For example, if K = 106, α = 0.05, and α1 = 0.001, the second test will

be at level 5 × 10−5. This guarantees that FWER ≤ α (proof: HW2, problem 3). The two-stage
approach has several advantages:

1. Cost: On the set of n −m samples, we only need to genotype (measure) the roughly α1K
SNPs that pass the first threshold, not the entire K

2. Replication: If the second set of data is genotyped independently of the first one, errors in
genotyping or lab problems may not repeat, so results are less sensitive to those

One aspect that is sometimes mistakenly considered as an advantage: power (probability of discov-
ering a true association) is generally decreased by the two-stage policy compared to the single-stage
one (Proof - HW extra credit).
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Expectation-Maximization (EM) to estimate stratification by ancestry

(This section is primarily based on the paper Estimation of Individual Admixture by Tang et al.,
Genetic Epidemiology, (2005)).

For this section we will assume that we have:

• I individuals from K different ethnic origins. For simplicity we assume K = 2,, mixture of
European (Eu) and African (Af) ancestry, as in African-Americans. We assume in the I we
have:

– I0 of mixed ancestry (unknown mixture proportions)

– I1 = I − I0 of known ancestry (typically 100% from one ancestry), I1 = 0 is possible

• On each individual we observe M genetic markers (×2 for two chromosomes), which may
have a different distribution in Eu and Af, and therefore carry information on ancestry

• Each marker m has Lm possible values. For SNPs usually Lm = 2, but the markers can also
be other elements like STRs with Lm > 2.

Notations:

• G = {Gima} – Value of the m marker in the i individual, copy a ∈ {1, 2}. This is a random
variable.

• P = {Pmlk} – Proportion of value l for marker m in population k. For example, if SNP j is
always A in African and has 50% A in Europe, then Pj,A,Af = 1, Pj,A,Eu = 0.5. These are
unknown parameters.

• Q = {Qik} – Proportion of ancestry k in individual i. for i > I0 this is a known binary vector
Qik ∈ {0, 1}, while for i ≤ I0 this is an unknown parameter vector on the simplex.

Assumptions:

• Gim1a1 , Gim2a2 are independent ∀m1,m2, a1, a2. This entails two assumptions:

1. No LD between the markers m1,m2. This may not be very problematic if the M markers
were samples for the sole purpose of estimating ancestry, so there are not too many of
them and they are far apart.

2. The two chromosomes of the same individual are independent, so for m1 = m2 the two
copies are still independent. This is known as the Hardy-Weinberg Equilibrium (HWE)
assumption, and is violated for example by marriages between relatives.

The resulting log-likelihood function:

`(P,Q;G) =

I∑
i=1

M∑
m=1

2∑
a=1

Lm∑
l=1

I {Gima = l} log

(
K∑
k=1

PmlkQik

)
,

where the last term is the probability of the value l in the m for person i, summarized over her
ancestry distribution.

The paper describes several interesting solutions for this estimation problem, we will focus on
one that uses a well known approach we can refresh and use: Expectation-Maximization (EM).
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Reminder: EM algorithm

Assume we have a parameter vector Θ, some observed data X and some unobserved data Y. We
want to calculate the MLE of Θ given the observed data X, however the calculations are much
easier if we had known Y as well, that is calculating `(Θ;X,Y ) is easier than directly `(Θ;X).

Then the EM algorithm is an iterative algorithm. At stage r, we have a “current guess” Θ(r),
and we use it to calculate:

E-Step: `Er (Θ) = EΘ(r) (`(Θ;X,Y )|X) ,

that is, the expected value of the log-likelihood, integrated over the unknown Y , and using the
current vector Θ(r) in the distribution of Y |X. Note that Θ plays two roles here – one, where Θ(r) is
used to calculate conditional expectation, and two, where Θ is used symbolically in the likelihood.
For example, if Y appears only linearly in the log-likelihood, then we simply plug EΘ(r)Y |X into
this to obtain `Er .

The next step is the M-step, which finds the best value of Θ given the current integrated
likelihood `Er :

M-Step: Θr+1 = arg max
Θ

`Er (Θ).

The theoretical guarantee we get is that `(Θ(r);X) is an increasing function of r, which converges
to a local maximum (not necessarily the MLE, which is the global maximum). For convex problems,
it will eventually converge to the MLE.

EM for our problem

Define as unobserved data: Z = {Zima} ∈ {1, . . . ,K} the ethnic origin (e.g., Eu or Af) of the ath
copy of the mth marker in the ith individual.

For i > I0, Zima = {k : Qik = 1} is in fact known, since Qik ∈ {0, 1}. For i ≤ I0, under our
assumptions Zima ∼ multinom(Qi).

The log-likelihood of the complete data:

` (P,Q;G,Z) =
∑
i

∑
m

∑
a

∑
l

∑
k

I {Gima = l, Zima = k} log (PmlkQik) .

From this it is easy to see the form of the E-step:

`Er (P,Q) = EQ(r),P (r) (`(P,Q; X,Y )|X) =

=
∑
i

∑
m

∑
a

∑
l

∑
k

I {Gima = l}PQ(r),P (r) (Zima = k|G) log (PmlkQik) .

We have to calculate the probability / expectation, denote

E
(r)
imak = PQ(r),P (r) (Zima = k|G) ,
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and assume Gima = l is given, then:

E
(r)
imak = P

(
Zima = k|Gima = l; P

(r)
mlk, Q

(r)
ik

)
(∗)
=

P (Zima = k,Gima = l)

P (Gima = l)
=

=
P

(r)
mlkQ

(r)
ik∑K

u=1 P
(r)
mluQ

(r)
iu

,

where the equality (*) is due to the independence assumptions we made above (each Zima is drawn
independently than all other Z’s, and Gima depends only on Zima.)

Now we can write the explicit integrated likelihood to move to the M-step:

`Er (P,Q) =
∑

i,m,a,l,k

I {Gima = l}E(r)
imak log (PmlkQik) =

=
∑
m,k,l

log (Pmlk)
∑
i,a

I {Gima = l}E(r)
imak

+
∑
i,k

log (Qik)
∑
m,l,a

I {Gima = l}E(r)
imak

 ,
and maximizing this to find P (r+1), Q(r+1) is easy:

P
(r+1)
mlk =

∑I
i=1

∑2
a=1 I{Gima = l}E(r)

imak∑I
i=1

∑2
a=1E

(r)
imak

Q
(r+1)
ik =

∑M
m=1

∑2
a=1E

(r)
imak

2M
for i ≤ I0

Q
(r+1)
ik = Qik known for i > I0.

8


