
Statistical Genetics, Spring 2022

Class notes 1, part 2

Example: Molecular clock calculations

Assume now we have n generations of mutations father→son→grandson etc.
Assume every generation has fixed probability p of mutation (”Molecular clock”).
Then number of mutations k in n generations: Bin(n, p) ≈ Pois(np).

Rather than in discrete generations, we can also think of this continuously, where a mutation
can happen in every point in time at a fixed rate λ, so the waiting time for mutation has exp(λ)
distribution with mean 1/λ.
If we now assume generation length is t0, then the number of mutations in n generations has a
Pois(nt0λ) distribution, that is the binomial p above is t0λ.

When we look at genetic sequences and observe differences the classical problems are:

1. Calibration: Given time (n or nt0) estimate the mutation rate λ or p.

2. Time estimation: Given the rate λ estimate the time T = nt0 separating between sequences
of species.

Estimation with two sequences

We have two DNA sequences (say modern human and Neanderthal coding region mtDNA of length
15447 bases), denote them X1 and X2. They are separated by T time (up and down the species
tree in this case).

We assume mutations occur as a Poisson process in each site in the sequence. To analyze, we
have a hierarchy of assumptions:

1. Molecular clock: Mutations occur at fixed rate across time in the evolution (possible vi-
olations: generation length, radioactivity...), also included is assumption of independence
between sites

2. Fixed rate across sites: Mutations occur at same rate in all sites

3. Binary genomes: Genomes have two states (this assumption is pretty mild because transi-
tions are a lot more common than transversions)

4. Known mutation count in each site: This is a (naive) assumption that in each site we
know not only the states of the two sequences, but how many mutations occurred between
them
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With all four assumptions, if we have known how many mutation occurred in each site, denote
them Y1, . . . , Y15447, we would know that Yi ∼ Pois(λT ), and from Poisson properties the summary
statistic is the sum of average or mutations with distribution:

S =
15447∑
i=1

Yi ∼ Pois(λtotT ) , λtot = 15447λ

and corresponding trivial MLEs: given T : ˆλtot = S/T and given λtot: T̂ = S/λtot.
It is important to note that given Assumption 4, the same holds even without Assumption 2 (since
the sum of independent Poissons is Poisson even with different rates), with λtot the parameter of
interest.

But Assumption 4 that we know the Yi’s is naive and unrealistic if we only have the sequences,
so we dispense with it completely. Rather with the other three assumptions, by comparing the two
sequences we know that when X1j = X2j , site j had even number of mutations, otherwise odd.

For Y ∼ Pois(λT ), the probability of being even is P (Y even) = 0.5 + 0.5 exp(−2λT ).
Proof: Assume we have two independent Pois(λT ) random variables. The probability they both
have zero mutations is exp(−2λT ). Now take the last event that happened on either Poisson. With
probability 1/2 it happened on the first and flipped its parity, with 1/2 in the second and the first’s
parity is unchanged. Hence conditional Y1 + Y2 > 0 the probability of Y1 being even and odd is
equal:

P(Y1even) = exp(−2λT ) + 0.5× (1− exp(−2λT )) = 0.5 + 0.5 exp(−2λT ).

Hence if the sequences differ at M loci, we have M ∼ Bin(15447, 0.5 − 0.5 exp(−2λT )), and
then we can find MLE of λ given T and vice versa from p̂ = M/15447 by invariance of MLE:

λ̂ =
− log(1− 2p̂)

2T
, T̂ =

− log(1− 2p̂)

2λ̂
.

(Note this is not an unbiased estimate).

Now if we want to estimate T (modern,Neanderthal) we can note that:

1. Modern humans and Neanderthals differ at around 170 sites, so p̂1 = 0.011.

2. Modern humans and Chimpanzees differ at around 1300 sites, so p̂2 = 0.084.

3. We also assume that for humans and Chimpanzees, a common estimate based on fossils is
T2 = 13M years (6.5MY to last common ancestor).

So calibration gives us λ̂ = − log(1−2·0.084)
2T2

= 7.1×10−9, and for the entire mtDNA coding region:

λtot = 15447× 7.1× 10−9 = 1.09× 10−4.

Using this, we can estimate T1: − log(1−2·0.011)

2λ̂
= 1.57× 106.
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Conclusion: 1.57× 106/2 = 785K years since the split.

Note: A simplified calculation using Assumption 4 and assuming that the number of mutations
is 0 or 1, gives λ̂ = p̂/13M = 6.5× 10−9, not much different, because p̂ << 1.

Relaxing Assumption 2

Assumption 1 is quite inevitable, and 3 is not major because transitions are much more common
than transversions.

We would like to test Assumption 2 statistically. Denote the number of mutations in site i by
Zi ∼ Pois(λiT ). As an alternative, we may take the Negative Binomial distribution:

H0 : λ1 = . . . = λ15447

HA : Zi ∼ NB(α, p) : P (Zi = k) =
Γ(k + α)

Γ(k + 1)Γ(α)
(1− p)αpk.

This is the famous approach of Tamura and Nei (1992).

Reminder: Gamma distribution: X ∼ Γ(α, β) has density f(x) = xα−1e−xβ βα

Γ(α) . If λ ∼
Γ(α, β) and Z|λ ∼ Pois(λ), then unconditionally Z ∼ NB(α, p = 1/(1 + β)). This is often called
”Overdispersed Poisson” and can be thought of as a random effects model. Proof:

P (X = k) =

∫ ∞
0

fΓ(λ) · pPois(λ)(k)dλ =

∫ ∞
0

λα−1e−λβ
βα

Γ(α)
e−λ

λk

Γ(k + 1)
dλ =

=

(
β

β + 1

)α( 1

β + 1

)k Γ(k + α)

Γ(k + 1)Γ(α)

∫ ∞
0

λk+α−1e−λ(β+1) (β + 1)k+α

Γ(k + α)
dλ =

=

(
β

β + 1

)α( 1

β + 1

)k Γ(k + α)

Γ(k + 1)Γ(α)
= NB(k;α, p = 1/(1 + β)).

Notes:

1. Moments of NB: E(X) = E(E(X|λ)) = E(Γ(α, β)) = α/β (iterated expectation). Variance
(Law of total variation):

V ar(X) = V ar(E(X|λ)) + E(V ar(X|λ)) = V ar(λ) + E(λ) =
α

β2
+
α

β
=

pα

(1− p)2
.

2. As α→∞ with α/β = λ fixed, we converge to Poisson (the Γ gets peaked at the point α/β).

Data analysis and hypothesis test: see paper and code on class page, we get α̂ = 0.168.
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Probability of Z ∼ NB(α, β) to be even:

P (Zeven) =

∫ ∞
0

fΓ(λ) · P (Pois(λ)even)dλ =

∫ ∞
0

λα−1e−λβ
βα

Γ(α)
(0.5 + 0.5e−2λ)dλ =

= 0.5 +

(
0.5

(
β

β + 2

)α)∫ ∞
0

λα−1e−λ(β+2) (β + 2)α

Γ(α)
dλ = 0.5 + 0.5

(
β

β + 2

)α

Calculation of split time using NB(0.168, ·): Chimpanzee: 0.5 + 0.5(β/(β + 2))0.168 =
0.916 ⇒ β̂ = 1.003. This gives average of α̂

β̂·13·106
= 1.28 × 10−8 mutations per site. Hence

λtot = 1/5033.5. About half of what we had with Poisson calculation!

Neanderthal: 0.5 + 0.5(β/(β + 2))0.168 = 0.989 ⇒ β̂ = 14.1. Using the calibration this gives
Tnean = 0.5× α̂

β̂·1.28·10−8
= 496K.

Conclusion: 496K years from modern-Neanderthal split using NB, compared to almost double
using Poisson.

Summary and conclusions

1. The assumptions we take can have a major effect on genetic estimates

2. In this case, with the (provably incorrect) assumption of fixed rate we get an estimate that
is about twice as big as the one without the fixed rate assumption

3. We have a lot more to do: relax the binary assumption, critically examine the molecular
clock assumption and violations. But these are expected to have a minor effect on estimates
compared to the fixed rate assumption

4. Our analysis is still a bit naive in several aspects. For example, we estimate α based on
the modern human tree, then use the estimate as the true parameter in estimating branch
length. It makes more sense and is a more correct statistical approach to do all estima-
tion simultaneously as part of one big model. But it makes the analysis substantially more
complicated.
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