
Statistical Genetics, Spring 2022

Homework exercise 3

Due date: 11 May 2022 (Wednesday)

1. Trying out the EM algorithm of Tang et al. (2005)
The implementation I showed in class is available at
http://tau.ac.il/˜saharon/StatGen2022/EM.r.

In this problem we will play with performance of the algorithm on its own and as ancestry correction
in regression.

(a) Play with the dimensions that are expected to influence accuracy: number of markers, differences
in marker distributions between the populations, number of individuals of known ancestry from
each population, number of individuals of unknown ancestry. Each time fix all but one of these
parameters, and show the effect of varying the last one on accuracy. This can be measured in
MSE between actual and estimated proportions, or perhaps more accurately with KL divergence.
Comment on the results

(b) Create one more SNP that has disparity between the two populations, and make it “causative” by
drawing a disease phenotype that is affected by this SNP (say, logit(P(disease)) = SNP-1, where
SNP ∈ {0, 1, 2} is the genotype). Draw a disease status vector, and check that:

i. Some of the SNPs in the original data are associated with it due to the population stratification

ii. Those SNPs become less associated – or not at all – once the estimated ancestry is included
as a covariate

iii. The true SNP remains associated with the disease after including estimated ancestry in the
regression

Repeat this exercise several times to confirm consistency of results.

(c) Compare power to detect the causative SNP with and without ancestry estimation: how often does
the true causative have the highest coefficient or smallest p value without ancestry correction?
How often with the correction? Discuss your results.

2. Comparing power of different approaches for finding causative mutations
In this problem, we will use simulated data to compare the following approaches for identifying a
causative mutation among several correlated ones (without stratification):

• P-values derived from univariate logistic regression (i.e., a separate model for each SNP).

• Log-likelihood of univariate logistic regression model

• P-values of Chi-square tests

Use the data generator in the file http://tau.ac.il/˜saharon/StatGen2022/datagen.r, which generates
a sample of X1, X2, Y values of length n = 1000, where we assume Xj ∈ {0, 1, 2} are SNP genotypes
and Y ∈ {0, 1} is the disease status (you can play with n or any other aspect of the data generation).
. The true causative mode is “recessive”, i.e., X1 = 2 is the risk mode. As modelers we believe that
only one of X1, X2 is “causative” for Y , but do not know which one, and our goal is to find out that
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it’s X1, based on a random sample of n examples of X1, X2, Y . You can assume the recessive mode is
known.

(a) Repeat at least 10000 times the experiment of generating data, performing the three procedures
above with appropriately defined variables, and finding how often X1 is chosen by each method.
Also record how often the methods disagree. Comment on the results.

(b) Try several different settings of the parameters to see if your conclusions change.

(c) (*) Prove that the first two methods are completely identical (i.e., always lead to choosing the
same variable) in linear regression. Explain why this is not the case for logistic regression.

3. Joint versus separate modeling
Assume we have two random covariates X1, X2, and a random response Y . Furthermore assume
E(Y |X1, X2) = f(X1) (for example: Y = βX1 + ε with ε ∼ N(0, σ2) in the standard linear regression
model). As modelers we believe that only one of X1, X2 is “causative” for Y , but do not know which
one, and our goal is to find out that it’s X1, based on a random sample of n examples of X1, X2, Y .
For this we have two possible strategies:

• We can build two univariate models, say two univariate regressions Y ∼ X1, Y ∼ X2, and choose
between them based on which attains smaller p-value for the covariate or higher log-likelihood

• We can build a single regression model with both covariates and choose the one that has lower
p-value or higher coefficient.

Choose one of the strategies in each of the following scenarios, and justify your choice – it can be based
on (sound!) theoretical arguments or thoughtful simulations.

(a) X1, X2 are independent (e.g., two SNPs on separate chromosomes).

(b) X1, X2 are positively correlated (e.g., two neighboring SNPs).
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