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I.  Short review of the bootstrap method 

 

• Population distribution function    , some 

    parameter or feature                 

• A random sample                          from this 
population 

• Estimator                    

• What is the estimator’s quality? We want to 
estimate some parameter that characterizes it,  

                  , which may be a function of the unknown 
parameter     .  
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II. Short review of phylogenetic trees 

• Every organism carries sequences of DNA, and each 
species is characterized by its typical sequences. 

• The history of all species begins with one ancestor, 
whose offspring developed various mutations. 
Throughout history species were formed through 
accumulation of mutations.   

• We want to build a tree to map the history and 
relationship between species. All species existing today 
are leaves in this tree. 

• The real tree is rooted, since there was only one 
species in the beginning. 
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Bacteria  -  a large domain of prokariotic microorganisms (Prokariots  -  
organisms whose cells lack a cell nucleus (karyon)). 
Archaea  -  another domain of prokariots, all single-celled. 
Eucaryota  -  organisms whose cells do have a nucleus.  



• If we take sequences from very different 
species, with high probability all nucleotides 
can be described by the same tree. 

 

 

 

 

    It means that for every site, the convergence 
of (human, cow) is closer than of (human, 
bird) and of (cow, bird). This is probable given 
the history.  
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• Table of sequences: 
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• The simplest metrics between species: Hamming 
distance - the number of sites at which the two 
species differ. 

 
• Tree building methods: 
 
    1. Neighbour joining: 
    Connect the two closest species, and so on. 
 
    2. Maximum parsimony: 
    Minimize the total number of mutations in the tree. 
    Good for many thousands of species. 
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     3. Maximum likelihood: 

     Parameters: 

         - Tree topology 

         - Mutation model 

         - Edge lengths 

     Usually assume that the sites are independent. 

     Good for a few tens of species. 

 

• None of these models gives information about the 
root’s location. 
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• Methods for placing the root: 

    1. Molecular clock: 

    Mutations occur in a constant rate over 
history. 

    Choose the most distant point from the 
leaves, according to some metrics (e.g. the 
point with biggest minimal distance from a 
leaf). 

    2. Outgroup: Add a species that is surely 
separated from all, and “hang” the tree from 
the edge leading to it. 
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III. Felsenstein’s method 

• a monophyletic group is a group of species which 
consists of all the species that are descended 
from some edge in the rooted tree, and only of 
them. 

• A rooted tree is a series of arguments about the 
monophyly of groups in the tree.  

• Use bootstrap to build phylogenetic trees and 
test hypotheses about the monophyly of groups 

• The researcher’s main interest is to decide 
whether or not a group of species is 
monophyletic. 
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• Data table: 

 

 

 

 

 

 

• Bootstrap across the characters: sample    
columns with replacement.   
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• We get a bootstrap sample that is a multinomial 
r.v. : each of the possible columns has a 
probability that is its frequency in the original 
sample of columns. 

• Choose some optimality criterion for tree 
building (e.g. maximum parsimony). 

• Build a tree based on each of the bootstrap 
samples.  

• The estimated tree(s) is built according to the 
“majority rule”: the groups that are monophyletic 
in it are the ones that where monophyletic in 
most of the bootstrap trees. 
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•     -  some group of species.  

• H0:      is not monophyletic 

• Reject H0 If     is monophyletic in at least 95% 
of the bootstrap trees, i.e. if it is not 
monophyletic in less than 5% of the bootstrap 
trees. 

• This is equivalent to building a one-sided 
percentile confidence interval for the indicator  

16 

S

1, is monophyletic

0, otherwise

S



 


S

S



• For each bootstrap sample (                ): 
 
 

 
     And                                   . 
   
• If the 5th percentile of             is 1 (i.e., the lower bound 

of the bootstrap percentile confidence interval is 1) , 
Felsenstein rejects H0 and says that the group is 
monophyletic.  

• The proportion of bootstrap trees where     is 
monophyletic is Felsenstein’s confidence in the 
monophyly of the group. Efron denotes it by 

                                                   .  
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• Data set used by Efron to demonstrate the use of 
Felsenstein’s method: 11 malaria species, 221 
sites. 

    The first 20 columns of the data matrix     : 
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• Tree building algorithm: distance matrix 
between species (221 x 221) 

 

 

• Proceeding with Felsenstein’s method: 

                bootstrap samples were generated, and 
bootstrap trees were built:      
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• For every monophyletic group in the original 
tree, the proportion of bootstrap trees where 
this group is monophyletic (Felsenstein’s 
confidence) was calculated. 

• For example: the 9-10 clade appeared (as 
monophyletic) in 193 of the 200 bootstrap 
trees, so its confidence value is 0.965.  
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What are the main problems with Felsenstein’s 
method: 

 

1) With respect to this course? 

2) As put by Efron? 

3) According to other critiques, such as Hillis 
and Bull? 
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1) With respect to this course: 
• This is not correct hypothesis testing: 

 

 
   H0:       is not monophyletic,  i.e.          .  

   H1:       is monophyletic,  i.e.          . 
 

       Test statistic:  

        We need to create a null bootstrap world, where 

         is not monophyletic,  i.e.          , and use it to 
estimate                                      by calculating 
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    This is the proportion of bootstrap samples that give 

a tree in which     is monophyletic, when     , the 
distribution function of bootstrap samples     , is in H0  
and is as similar as possible to     (the distribution of     
in the real world).            

         

    Instead, Felsenstein resamples from a specific  
distribution in H1 – the empirical distribution of    , 
that gave us a tree in which      is monophyletic. This 
Is not valid hypothesis testing. 
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• Bootstrap percentile confidence interval cannot 
be justified, for example because the monophyly 
indicators      and      can only get 0 or 1, so there 
cannot exist a monotone     s.t.  

                                              .         

                                                                

        

̂
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2) As put by Efron: 
• The use of the (nonparametric) bootstrap to 

estimate the parameter itself (  , the indicator for 
the monophyly of   , by estimating the tree), 
instead of the quality of the estimator (bias, 
variance etc.). 

• We want to infer our confidence that     is truly 
monophyletic given that we estimated it as 
monophyletic. 

• But we are actually estimating the probability of 
inferring monophyly, assuming that our original 
sample is a true description of the real tree (in 
the sense that     is indeed monophyletic). 
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In other words: 

• We want to decide how confident   
(confidence  =  1  -  p-value) we are that          
given that our estimate is         . This is 
equivalent to building a valid percentile plug-
in CI: 

• But we are actually estimating the probability 
to get          when         . This is equivalent to 
building the less valid percentile CI: 

 

ˆ 1 

1 

ˆ 1  1 
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3) According to other critiques, such as Hillis 
and Bull: 

    Felsenstein’s confidence values are 
consistently too conservative (i.e., biased 
downward) as an assessment of the tree 
accuracy. 
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IV. Efron’s justification and corrections 

Efron, Halloran & Holmes: 

a) Felsenstein’s method provides a reasonable first 
approximation to the actual confidence levels of 
the observed clades. This is an answer to 
problem (2). 

b) Felsenstein’s confidence assessment is not 
consistently biased downward. This is an answer 
to problem (3). 

c) Suggest a more complex method to give better 
assessments of confidence. 
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a) Efron’s answer to problem (2): Why is 
Felsenstein’s confidence justified? 

• The rationale: The bootstrap samples come from 
a multinomial model: 

• In the malaria example, there are 11 species, so 
there are                  possible column vectors for    . 
Denote them               . 

• Suppose each observed column of     is 
independently chosen from these vectors, with 
some probability     to choose     (           ). These 
probabilities depend on the population of sites 
(the true tree). 

• Denote                          .       
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•     can be characterized by the proportion of its 

               columns equaling each possible     : 

 

 

 

•     is a function of the original observed 
proportions    , so the tree-building algorithm 
can be described as 
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• We can add the group of interest’s monophyly 
indicator to the process: 
 

• In a similar way (although possibly in an opposite 
causal order – the tree comes first in reality), the 
vector of true probabilities      gives the true 
distance matrix and the true tree (that we 
assume we would get by applying our algorithm 
to the true distance matrix): 

 
 

     (where                               ) .                                  
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• The proportions of columns in a bootstrap 
sample are: 

 

 

 

• And we get a bootstrap tree: 

 

    (and 𝜓 ∗). 
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A schematic picture of the space of possible   ‘s: 

 

• We hope 

    to have 

                    .  
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• It is not clear why we can use the distribution 
of                 to infer our confidence in               .  

• Or in terms of the monophyly indicator, why 
we can decide how confident we are that          
given that our estimate is          by estimating 
the probability that          given that        . 
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The answer is in using a Bayesian approach: 

• The bootstrap distribution of                 is 
almost the same as the posterior distribution 
of                if we begin with an 
“uninformative” (i.e., uniform) prior density    . 

An explanation can be found in Efron’s booklet 
“The Jackknife, the Bootstrap and other 
resampling plans” (1982).   
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• Assume a discrete sample space. In our 
phylogenetic case, this is the space of all 
possible columns (                ). 

•     - the probability that a column in a sample 
will be identical to the possible column     . 

• The observed frequency: 

 

• The observed frequencies:     

• The real probabilities: 
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• Choose as the prior distribution of     (the real 
probabilities – the parameter we want to 
estimate) a        dimentional Dirichlet 
distribution with parameter     , which has to 
be a vector of      positive numbers:  

                           . 

•  We choose                                 to get a 
symmetric distribution.  
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•  From Wikipedia: Several images of probability 
densities of the Dirichlet distribution with K=3. 
Clockwise from top left: α = (6,2,2), (3,7,5), 
(6,2,6), (2,3,4). 
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• Left plot: 

• Center plot: 

• Right plot:  
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• So apriori                                          with the 
density function  
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• From the sample we have the observed 
frequencies    .   

• The likelihood function          is multinomial: 
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• The Dirichlet distribution is self conjugate with 
regard to multinomial likelihood, and the 
posterior distribution of      is 

 

    which means that we add to each parameter 
the number of times that the corresponding 
column appears in the sample     . 

• If we minimize the effect of the prior 
“knowledge” by taking            , we will get       
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• The distribution of the observed frequencies 
in a bootstrap sample, 

 

 

is a good approximation for the limit of the 
posterior  distribution                            .           

• Therefore we have a basis to think that 
Felsenstein’s confidence level is a good 
approximation for the confidence level we try 
to estimate. 
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b) Efron’s answer to problem (3): Why is 
Felsenstein’s confidence assessment not 
consistently biased downward?  

• To better explain the problem in Felsenstein’s 
method which causes the apparent “bias”, 
Efron uses a simpler example: A normal model 
(instead of multinomial) and parametric 
bootstrap (instead of nonparametric).                     
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A simpler model:       𝒙~N2 𝝁, I  
                                     𝝁 = 𝜇1, 𝜇2   
  

 
• The     - plane is divided into regions           . 
•     lies in     , and we wish to assign a confidence 

value to the event that      itself lies in     . 
• In our terms:  
         H0:  μ ϵ  

         H1:  μ ϵ 

    confidence  =  1  -  p-value 
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• Parametric bootstrap:      

 

• Felsenstein’s confidence value: 

 

 

• As in the multinomial case, it can be justified 
by using the Bayesian argument. 
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Why is      a reasonable assessment of the 
confidence that           ?  

• As in the multinomial model,     is the 
posterior probability that            given that            
when we assume apriori that     can be 
anywhere in the plane with equal probability. 

• The posterior distribution:                        , 

    exactly the distribution of         .           
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•                                           ,  but                               . 

According to Efron, this generates the “bias” for 
which the method was criticized. 

 

• In the phylogeny case, the fact is that the 
probability that                    is usually less than 
the probability that                  . 

 

• But Efron also gives a perhaps more 
convincing explanation for the alleged bias. 
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• Two possible examples: 
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• Felsenstein’s confidence value: 

 

• Calculated theoretically: 

 

• How would we assign a confidence level to 

   μ ϵ      ?   

•   In our terms:  

         H0:  μ ϵ  

         H1:  μ ϵ 

    confidence  =  1  -  p-value 
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• A more customary way of assigning a 
confidence level to           :        𝝁  ~ F = N2 𝝁, I  
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• p-value =          = 
# 𝝁 ∗∗ further than 𝝁  from the boundary of  ℜ2

𝐵
 

 

• The confidence level for the two cases 
(computed numerically): 
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Why are the answers different? 

• The boundary curves away from                     
The probabilistic distance from     to       (   ) >  
the probabilistic distance from      to      (   ).  
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        is not systematically biased downward. 

The “bias” depends on the geometrics of the  
problem. In this example, Felsenstein’s 
confidence is biased upward. 
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c) Efron’s method for better assessment of 
confidence  

 
• Efron suggests an approximation formula for 

converting Felsenstein’s confidence level      to a 
hypothesis-testing confidence level    . 

• Denote:  
 
 

• Then  in the normal case:                  
   
•     is of order      , and the error in estimating      is of 

order    . This is called “second order accuracy”.   
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Estimating     in the normal example: 

•   

 

  

         

•   

 

 

•   
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• In the multinomial model (trees) 

 

 

•      -  acceleration  factor from BCa  

 

Example with malaria data: 

• Efron got                  for monophyly of 9-10 
clade with              . With                he got 

                   . 

• He wants to compute    .                           
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• Denote: 

 

                            𝑃∗ = (𝑃1
∗, ⋯ , 𝑃𝑛

∗) ∼  Mult 𝑃 cent  

•       -  vector of proportions of the original 
matrix’ columns in a bootstrap sample 

 

• A bootstrap sample  (     matrix ): 

• The original data (     matrix ): 
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*P

X

* * *ˆ ˆtreeP D 
*X

ˆ ˆtreeP D 

𝑃 cent =
1

𝑛
,⋯ ,

1

𝑛
 



Computing     : 

 

Step 1: 

•   

•  9-10 clade was monophyletic in 1923 out of 
2000 samples.  
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0.962


  


̂

𝑃∗ 1 ,⋯ , 𝑃∗ 𝐵2  ~ Mult 𝑃 cent ,         𝐵 = 2000  



Step 2: 

• Out of the first 200 bootstrap vectors, 9-10 
was not monophyletic in 7: 

• For each, choose                 s.t. the vector  

                                             is on the boundary of 
9-10 monophyly. Use binary search to do it. 

• The vectors        play the role of     .     
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   1 7
, ,P P

0 1w 
       

1
j j cent

p wP w P  

 j
p ˆ





Step 3: 

• For each boundary vector       , create                
bootstrap samples:                                                  

• Each        gives a tree. The trees where 9-10 is 

    monophyletic were counted: 
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 j
p 2 400B 

**P

𝑃∗∗ 1 ,⋯ , 𝑃∗∗ 𝐵2  ~ Mult 𝑝 𝑗   

⇒     𝑧 0 = Φ−1 1511

2800
= 0.0995 

1511 



Step 4: 

• Given a direction vector                           from 
the center  (   ,        )  to the boundary (    ,      ), 

 

 

 

 

•       values they got: 
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   j cent
U p P 

ˆ
̂  cent

P
 j

p

 

3

1

3 2

2

1

1

6

n

k

k

n

k

k

U

a U

U






 
 
 





a



• The average: 

 

Step 5: 

•   
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0.0129a 

𝑧 = Φ−1 𝛼 = Φ−1 0.962 = 1.77 

𝑧 0 = 0.0995 

𝑎 = 0.0129 

⇒    𝑧 = 
𝑧 − 𝑧 0

1 + 𝑎 ∙ 𝑧 − 𝑧 0
− 𝑧 0 = 1.5357 

⇒    𝛼 = Φ 𝑧 = 0.938 <   0.962 = 𝛼  



• In this example Felsenstein’s      was biased 
upward. This happens when           . 

• The opposite can also happen, for example 
with the 7-8 clade.   
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0 0z 





Summary 

• In a Bayesian sense,     is a reasonable assessment 
of confidence. 

•      is not systematically biased downward. 
•      has a more familiar interpretation as 

hypothesis-testing confidence level. 
•      can be estimated by a two-level bootstrap 

algorithm. 
• For     , 50-100 bootstrap samples at the first level 

are enough. For    , ~2000 bootstrap samples are 
needed at the second level.    
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



̂

̂


̂


