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Gaussian process regression Motivation

Generalized Least Squares (GLS)

Linear regression for correlated data:

z = Xβ + ε,

where z ∈ Rn, X ∈ Rn×p and ε ∼ N(0,V ). Given V, the MLE of β is:

β̂ = (X tV−1X )−1X tV−1z .
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z = Xβ + ε,

where z ∈ Rn, X ∈ Rn×p and ε ∼ N(0,V ). Given V, the MLE of β is:

β̂ = (X tV−1X )−1X tV−1z .

Once we estimate β we can use it for predicting new observations,

z∗ ∈ Rn∗ at new covariate points X ∗ ∈ Rn×p, i.e., ẑ∗ := Ê(z∗) := X ∗β̂

Ez ẑ∗ = X ∗(X tV−1X )−1X tV−1Xβ = X ∗β.
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Gaussian process regression Motivation

Generalized Least Squares (GLS)

GLS is reduced to LS solution when V = σ2In.

V−1 contains the observations weights. Similar (correlated)

observations are credited correspondingly. From a broader

perspective, in terms of prediction, the efficient sample size is smaller

and affects Var(β̂).

Mostly, V is unknown and therefore is estimated. Inaccurate

estimation affects Var(β̂) :

Var(β̂) = (X tV̂−1X )−1X tV̂−1V V̂−1X (X tV̂−1X )−1.

When V̂ = V :

Var(β̂) = (X tV−1X )−1 = I−1(β̂).
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Gaussian process regression Motivation

BLUP

Assuming normality of z , z∗, then:

z∗|z ∼ N(µz∗|z ,Σz∗|z),

where

µz∗|z = E(z∗) + Cov(z∗, z)Cov(z , z)−1(z − E(z))

Σz∗|z = Cov(z∗, z∗)− Cov(z∗, z)Cov(z , z)−1Cov(z , z∗)

The best linear unbiased predictor of z given z∗ and the covariance

matrices is:

Ê(z∗|z) = X ∗β̂ + Cov(z∗, z)Cov(z , z)−1(z − X β̂).
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Gaussian process regression Motivation

BLUP

Ê(z∗|z) = X ∗β̂ + Cov(z∗, z)Cov(z , z)−1(z − X β̂)

E(z∗|z) is also the solution of the following problem:

argmin
a∈Rn∗ , B∈Rn∗×n

Ez ,z∗‖z∗ − (a + Bz)‖2
2

(so the normality assumption can be avoided).
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Gaussian process regression Motivation

BLUP - applications

X ∗β̂ + Cov(z∗, z)Cov(z , z)−1(z − X β̂)

Clustered data: {z ,X} were sampled from two clusters. {z∗,X ∗} are

sampled from the same clusters.

Cov(z , z) =



2 1 1 0 0 0

1 2 1 0 0 0

1 1 2 0 0 0

0 0 0 2 1 1

0 0 0 1 2 1

0 0 0 1 1 2


, Cov(z∗, z) =

[
1 1 1 0 0 0

0 0 0 1 1 1

]

Exmples:

Grades in school classes.

Disease progression (repeated measures). Combines two correlation factors:

patient (cluster) and a temporal vector.
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Gaussian process regression Motivation

BLUP - applications

Spatial data: Here the correlation depends on the distance between the

observations, therefore the covariance matrix should be related to a

continuous function of the distance.

Figure: Taken from Jack Baker Research Group’s website

This leads to introduce random field...
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Gaussian process regression Random Field

Random Field - Definition

Random field (spatial stochastic process) is the following instance

z := z(s), s ∈ S,

where S is a spatial uncountable space, e.g., R2, a manifold such as a

tunnel network, a product space R× Z.

A random function where its index space is continuous.

It is a generalization of the standard representation of stochastic

process:

z := z(t), t ∈ T ,

where T is the continuous time axis. (which is a generalization of

time series, where T is a countable set of time points).

There are many types of random field, we focus on Gaussian random field

(Gaussian process): i.e., for any finite set {s i ∈ S}ni=1 :

z := {z(s i )}ni=1 is distributed MVN.
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Gaussian process regression Random Field

Random Field - Definition

There are many types of random field, we focus on Gaussian random field

(Gaussian process): i.e., for any finite set {s i ∈ S}ni=1 :

z := {z(s i )}ni=1 is distributed MVN.

(a) S ⊂ R (b) One sample from S ⊂ R2.

Taken from Rasmussen (2003)
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Gaussian process regression Random Field

Random Field - Definition

Figure: S ⊂ R, multiple samples
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Gaussian process regression Random Field

Gaussian Process Regression

Implementing regression for spatial data uses the random field concept.

For example the BLUP formula is now:

X ∗β̂ +K(S∗, S)(K(S , S) + σ2In)−1(z − X β̂),

where K(·, ·) is the kernel covariance function. S ∈ Rn×2,S∗ ∈ Rn∗×2 are

the coordinates values of Z ,Z ∗.

General properties:

The correlation decreases with the distance (Tobler’s law)

Positive definite (PD) function.
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Gaussian process regression Random Field

Gaussian Process Regression

Using BLUP we now can estimate the function z at the points S∗

E(z∗|z) = X ∗β̂ +K(S∗,S)(K(S ,S) + σ2In)−1(z − X β̂)

Var(z∗|z) = K(S∗,S∗)−K(S∗, S)K(S , S)−1K(S ,S∗)

Figure: Taken from Rasmussen (2003)
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Gaussian process regression Random Field

Weak Stationarity

Weak Stationarity :

Ez(s) = Ez(s + sτ ) = µ, where µ ∈ R and sτ ∈ S, and satisfies

s + sτ ∈ S.

Cov
(
z(s i ), z(s j)

)
= Cov

(
z(s i + sτ ), z(s j + sτ )

)
.

Under the stationarity assumption the covariance function can be denoted

by C (hi ,j), where hi ,j = s i − s j . It emphasizes that the directed distance

between the locations is the sufficient argument for the covariance

function (rather than the coordinate values themselves). In many use

cases, the raw data should be preprocessed in order to assume stationarity.
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Gaussian process regression Kernels

Kernels - Examples

Gaussian (squared exponential)

σ2
s e
−(‖h‖/`)2

where σ2
s is also called the signal parameter and ` is the length-scale

parameter.

Unlike in the previous

graph, here we also

have noise.

Taken from Rasmussen

(2003).
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Gaussian process regression Kernels

Kernels - Examples

Exponential

σ2
s e
−‖h‖/`

The exponential is less smooth than the Gaussian around zero (which

makes the exponential better in many cases).

Power Exponential

σ2
s e
−(‖h‖/`)k

When k = 1 we get exponential

When k = 2 we get Gaussian

Assaf Rabinowicz Resampling Methods for Detecting Anisotropic Correlation Structure 9 / 33



Gaussian process regression Kernels

Kernels - Examples

Matern We can generalize it even farther using the Matern function

σ2
s

21−ν

Γ(ν)
(

√
2ν‖h‖
`

)νKν(

√
2ν‖h‖
`

).

where Γ(·) is the Gamma function and Kν(·) is the Bessel function of the

second type.

Matern kernel is very flexible

due to ν, which controls the

smoothness around zero.

ν = 1/2 is exponential, ν →∞
convergences to Gaussian.

Taken from Rasmussen (2003).
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Gaussian process regression Kernels

Kernels - Examples

Wave

σ2
s

`

‖h‖
sin(
‖h‖
`

).

Spherical

T (h) =

 1.5‖h‖` − 0.5(|‖h‖` |)
3

0

‖h‖ < `

o.w
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Gaussian process regression Kernels

Kernels - Examples

Tent PD in R (but not in higher dimensions).

T (h) =

 1− ‖h‖/`

0

‖h‖ < 1

o.w

Nugget

N(h) =

 1

0

‖h‖ = 0

o.w

(Power exponential when k → 0.)
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Gaussian process regression Kernels

Variogram

In spatial statistics in many cases the variogram function is used instead of

the covariance function.

γ(h) :=
1

2
Var(z(s + h)− z(s))
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Gaussian process regression Kernels

Variogram

In spatial statistics in many cases the variogram function is used instead of

the covariance function.

γ(h) :=
1

2
Var(z(s + h)− z(s))

γ(h) = C (0)− C (h).

The variogram is conditionally negative definite (rather than negative

definite): f : S→ R is conditionally ND if ∀{s i} and ∀{ai ∈ R}, s.t∑
ai = 0 ∑

i

∑
j

ai f (s i − s j)aj ≤ 0.

This is one reason that variogram is commonly preferred over the covariance

function.
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Gaussian process regression Kernels

Variogram

γ(h) = C (0)− C (h)

Figure: The three most common theoretical variogram models: spherical (blue),

exponential (black) and Gaussian (green). All three variograms share the same

variogram parameters: nugget = 0.2, sill = 0.8 and range = 0.2. Taken from

Mälicke et al. (2018).
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Gaussian process regression Kernels

Variogram estimation

Frequently, the variogram is estimated by the empirical variogram. The

empirical variogram in the range h∗ ± δ, where δ ∈ S is:

γ̂(h) =
1

2× |H∗|
∑

(i ,j)∈H∗

(
z(s i )− z(s j)

)2
, h ∈ h∗ ± δ

where H∗ = {(i , j)|s i − s j = h∗ ± δ} and |H∗| is the size of the set H∗.

Then, in order to fit a smooth

function, the empirical

variogram is estimated by

variogram kernel functions.
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Gaussian process regression Examples

Kriging - Meuse Data
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Gaussian process regression Examples

Kriging - Meuse Data
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Gaussian process regression Examples

Conditional Simulation

Conditional simulation is a tool to simulate random field data given observed

points.

Unlike Kriging, here the goal is to sample new observations that preserve the

distributional properties.

Taken from: Hans Wackernagel, 2013, Basics in Geostatistics 3 Geostatistical

Monte-Carlo methods: Conditional simulationAssaf Rabinowicz Resampling Methods for Detecting Anisotropic Correlation Structure 13 / 33



Gaussian process regression Examples

Modeling, California housing

There are many other motivations for fitting GPR, prediction, inference

etc. Commonly the covariance is structured by multiple kernel.

Cov(zi , zj) =

K(‖zi − zj‖) + σ2
bI(c(i)=c(j)) + σ2I(i=j)

where c(i) is the cluster of zi .

In many cases there are combinations of more complicated kernels,

including different kernels for different distance scales.
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Gaussian process regression Examples

Extensions

Generalized GPR (GGPR).

Linear Mixed Models (LMM)/GLMM.
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Isotropy

Definition

Isotropy is rotational invariance of the correlation structure, i.e.,

C (h) = C (‖h‖), ∀h ∈ S

here we focus on S ⊂ R2.

stationarity and isotropy:

isotropy→ stationarity

1

symmetry and isotropy.

isotropy→ symmetry

1we can think about isotropy in a broader perspective where it does not derive

stationarity, however it is not very common.
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Isotropy Examples

Simulation
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Figure: Simulated data of isotropy and anisotropy settings. Anisotropy setting:

(a) presents covariance functions in two directional axes that decay differently as

a function of the distance (with log10 scale). The green line is the covriance

function for the longitudinal axis, and the blue line is for the latitudinal axis. (b)

presents a simulated sample of an anisotropy setting. As once can see the

variance in the latitudinal axis is larger than in the longitudinal axis. This is due

to the higher correlation in the longitudinal axis than in the latitudinal axis. (c)

presents isotropy setting.

As we can see, in the anisotorpy setting, (b), the variance in the longitudinal axis

is smaller than in the latitudinal axis. This is due to the higher correlation in the

longitudinal axis. In the isotropy setting, (a), the correlation is the same for both

axes.
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Isotropy Examples

Granny Creek Field

The Granny Creek Field dataset contains 181 measurements of a

sandstone base elevation in Granny Creek Field, central West Virginia.
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Figure: Granny Creek Field dataset.
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Isotropy Examples

Additional Examples

(a) Taken from Wikipedia (b) Taken from Thieulin et al.

(2020)
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Isotropy Examples

Anisotropic Kernels

A specific type of geometric anisotropy is elliptic anisotropy, when a linear

transformation of h induces isotropy.

For example, the standard exponential kernel function, which assumes isotropy,

can be generalized using rotation and scaling matrices in order to capture elliptic

anisotropy:

σ2
s × exp

(
− ‖Ah‖

)
= σ2

s × exp
(
−
√

htAtAh
)
,

where for S ⊂ R2

A := A(λ1, λ2, η) =

[
1
λ1

0

0 1
λ2

][
cos(η) − sin(η)

sin(η) cos(η)

]
,

η ∈ [0, π] and η + π/2 are the anisotropy direction axes and λi ∈ R+ are the

anisotropic scales. When λ1 = λ2, then it is reduced to the standard exponential

kernel.
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Isotropy Detection using graphs

Directional Variogram

Surprisingly, the most common way to detect anisotropy is using the

directional variogram graph:

Figure: Directional Variogram
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Our approach

Goal

There are several hypothesis testing approaches for detecting anisotropy,

all of them are based on heavy asymptotic assumptions.

In ’Resampling Methods for Detecting Anisotropic Correlation Structure’

(Rabinowicz & Rosset, 2021) we propose new hypothesis testing

algorithms that are not (directly) based on asymptotic assumptions.
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Our approach Parametric Bootstrap Based Test

Parametric Bootstrap Based Test - General Setting

Hypotheses:

H0 : z(S) was sampled from a distribution with an isotropic covariance

function.

H1 : z(S) was sampled from a distribution with an anisotropic

covariance function.

Assumption for both hypotheses:

1 normality

2 stationarity

3 parametric covariance function structure (e.g., exp kernel family)

H1 can specify the suspected anisotropic directional axes, {ηi}i∈[1,...,R], or

alternatively only assume that there are R anisotropic directional axes.

Another setting is when H1 specifies ranges of {ηi}i∈[1,...,R].
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Our approach Parametric Bootstrap Based Test

Parametric Bootstrap Based Test - The Algorithm

1 Estimate Kθ|H0
(S ,S), Kθ|H1

(S ,S).

The kernel parameters can be estimated using various approaches, such as maximum

likelihood and restricted maximum likelihood (REML) of z.

2 Calculate the following anisotropic discrepancy measure:

φ = `
(
z ;Kθ|H1

(S , S)
)
− `
(
z ;Kθ|H0

(S , S)
)
,

where `
(
z ;Kθ|H0

(S , S)
)

and `
(
z ;Kθ|H1

(S ,S)
)

are the log-likelihood of z under the two

hypotheses.

3 Using parametric bootstrap estimate P(φ|H0). For b ∈ [1, ...,B], B ∈ N :

1 Sample one set of observations from Nn(µ1,Kθ|H0
(S, S)), and denote the sample

as z(b).

2 Estimate K(b)
θ|H1

(S , S), K(b)
θ|H0

(S , S) using z(b).

3 Calculate: φ(b) = `
(
z(b);K(b)

θ|H1
(S ,S)

)
− `
(
z(b);K(b)

θ|H0
(S, S)

)
.

4

P-value = |{φ ≤ φ(b)|b ∈ [1, ...,B]}|/B,

where | · | is the set size.
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(
− `
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(S ,S)
))
.
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3 Using parametric bootstrap estimate P(φ|H0). For b ∈ [1, ...,B], B ∈ N :

1 Sample one set of observations from Nn(µ1,Kθ|H0
(S, S)), and denote the sample

as z(b).

2 Estimate K(b)
θ|H1

(S , S), K(b)
θ|H0

(S , S) using z(b).

3 Calculate: φ(b) = `
(
z(b);K(b)

θ|H1
(S ,S)

)
− `
(
z(b);K(b)

θ|H0
(S, S)

)
.

4

P-value = |{φ ≤ φ(b)|b ∈ [1, ...,B]}|/B,

where | · | is the set size.
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Our approach Parametric Bootstrap Based Test

Comments

The parametric bootstrap hypothesis testing approach allows flexibility in

different aspects:

The statistic φ can be modified to other loss functions measuring the

anisotropic discrepancy magnitude, such as test set error or even

prediction errors, e.g., AIC (Akaike, 1974), Cp (Mallows, 1973) and

cross-validation (Stone, 1974) error types.

Controlling B, which tradeoffs between the resultant P-value

resolution and Var(P-value) (still the main factor is Var(z(S))), on

one hand and the computational cost on the other hand. Also, B

controls the P-value resolution. For example, when B = 200 the

P-value resolution is 0.005.

Specification of {ηi}i∈[1,...,R].
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Our approach Parametric Bootstrap Based Test

Parametric Bootstrap with a Non-Parametric Covariance

Function - Framework

Potentially, the kernel function family assumption can be avoided by the

following paradigm:

1 Calculate

yi ,j := (zi − µ)× (zj − µ), hi ,j := s i − s j

∀i , j ∈ [1, ..., n], and define {y ,H} = {yi ,j ,hi ,j}(i ,j)∈([1,...,n],[1,...,n])

2 Estimate the covariance function by monotonic regression of z with

respect to the distance:

H0: {‖hi,j‖}(i,j)∈([1,...,n],[1,...,n])

H1: projections of H on {ηi}Ri=1.

Also, the predictions should be non-negative.
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Our approach Parametric Bootstrap Based Test

Parametric Bootstrap with a Non-Parametric Covariance

Function - Challenges

Our try to replace the kernel by a non-parametric function

was failed...

Can you guess why?
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Our approach Parametric Bootstrap Based Test

Parametric Bootstrap with a Non-Parametric Covariance

Function - Challenges

The main reason is the difficulty to estimate well the covariance matrices using

this method.

Other issues:

The fitted monotonic regression model might be a non strictly positive

definite function.

Models enforcing monotonicity are computationally expensive, especially

models with multiple covariates, as in the anisotropic model. Taking into

account the large sample size in our application, (n + 1)× n/2, then when n

is not very small, the running time is long.

The anisotropic directional axes, {ηi}Ri=1, must be prespecified.
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Our approach Non-Parametric Rotational Sampling Test

Non-Parametric Rotational Sampling Test - Setting

Hypotheses:

H0 : z(S) was sampled from a distribution with an isotropic covariance

function.

H1 : z(S) was sampled from a distribution with an anisotropic

covariance function.

Assumption for both hypotheses:

1 normality

2 stationarity

3 parametric covariance function structure (e.g., exp kernel family)

H1 can specify the suspected anisotropic directional axes, {ηi}i∈[1,...,R], or

alternatively only assume that R anisotropic directional axes exist. Another

setting is when H1 specifies ranges of {ηi}i∈[1,...,R].
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Our approach Non-Parametric Rotational Sampling Test

Non-Parametric Rotational Sampling Test - The Algorithm

Given the suspected directional anisotropic axes η, η + π/2 :

1 Derive {y ,H} using {S , z(S)}, and calculate φ = φisotropy − φanisotropy , where:

φisotropy = min
θ|H0

n∑
i=1

n∑
j=i

(
yi,j −Kθ|H0

(‖hi,j‖)
)2

φanisotropy = min
θ|H1

n∑
i=1

n∑
j=i

(
yi,j −Kθ|H1

(hi,j )
)2

Since we don’t assume normality, it is more reasonable to use squared errors loss function

than a likelihood-based loss function.

2 For b ∈ [1, ...,B], B ∈ N :

1 Sample a random directional axis η(b) from [η + α, η + π/2− α].

2 Calculate

φ
(b)
anisotropy = min

θ|H1,η
(b)

n∑
i=1

n∑
j=i

(
yi,j −Kθ|H1,η

(b) (hi,j )
)2

φ(b) = φisotropy − φ
(b)
anisotropy ,

where Kθ|H1,η
(b) is the anisotropic kernel with the directions {η(b), η(b) + π/2}.
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(b)

n∑
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(
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(b) (hi,j )
)2

φ(b) = φisotropy − φ
(b)
anisotropy ,

where Kθ|H1,η
(b) is the anisotropic kernel with the directions {η(b), η(b) + π/2}.

In order to increase power, α prevents sampling axes that are close to the specified

anisotropic directional axes.
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φ(b) = φisotropy − φ
(b)
anisotropy ,

where Kθ|H1,η
(b) is the anisotropic kernel with the directions {η(b), η(b) + π/2}.

3

P-value = |{φ ≤ φ(b)|b ∈ [1, ...,B]}|/B.
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Our approach Non-Parametric Rotational Sampling Test

Comments

For improved readability, two perpendicular anisotropic directional axes are

specified, however, it can be easily generalized for more than two and

non-perpendicular anisotropic directional axes.

Instead of specifying suspected anisotropic directional axes, we can specify

only ranges. We can use α for constructing non-overlapping domains of

{ηi}i∈[1,...,R] and {η(b)}b∈[1,...,B]. For example, in case the suspected

anisotropic directional ranges are {η1 ∈ [−α, α], η2 = η1 + π/2}, then the

estimation of φanisotropy should also include optimization of η1.

Correspondingly, the sampling space in line 4 is [2× α, π/2− 2× α], and

the optimization in line 5 is also over η(b)∗ ∈ [η(b) − α, η(b) + α].

Similarly to parametric bootstrap algorithm, the kernel can be potentially

replaced by non-parametric monotonic regression. In that way, both main

parametric assumptions — normality and kernel structure — are avoided.
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Our approach Numerical Results

Simulation
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Figure: P-value empirical cumulative distribution for the Parametric bootstrap algorithm (PV),

non-parametric algorithm (NP), and Maity and Sherman (2012)’s algorithm (MS, previous

algorithm that relies on advance asymptotic) for n = 500 and different λ2.

λ2 = 1 λ2 = 2 λ2 = 5 λ2 = 10

Algorithm\n 200 500 1000 200 500 1000 200 500 1000 200 500 1000

PB 0.05 0.04 0.05 0.11 0.31 0.43 0.47 0.70 0.94 0.65 0.89 0.99

NP 0.14 0.07 0.07 0.05 0.15 0.19 0.16 0.29 0.24 0.27 0.30 0.33

MS 0.02 0.04 0 0.06 0.04 0.05 0.02 0.10 0.10 0.07 0.10 0.17

Table: The table presents empirical power for different settings for significance level of 0.05.

The λ2 = 1 column is the Type I error estimates.
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Our approach Numerical Results

Granny Creek Field dataset

The Granny Creek Field dataset contains 181 measurements of a sandstone

base elevation in Granny Creek Field, central West Virginia (Hohn, 1998).
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(a) Granny Creek Field dataset.
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Figure: Granny Creek Field. (a) presents the Granny Creek Field dataset after scaling.

(b) and (c) compare the φ value (in green) with {φ(b)}200
b=1.

The P-values of PB, NP and MS are: < 0.005, 0.025 and 0.011, respectively.
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Our approach Numerical Results

Mississippian Sandstone dataset

The Mississippian Sandstone dataset contains 348 measurements of subsea depth

of a mississippian-age reservoir sandstone base in Ritchie County, West Virginia

(Hohn, 1998).

Based on prior geographical knowledge, Hohn claims that the correlation in the

{π/4, 3× π/4} directional axes is suspected to be different than the correlation

in the {π, π/2} directional axes. Therefore, the elliptical transformation of the

anisotropic kernel is:

A =


1
λ1

0 0 0

0 1
λ1

0 0

0 0 1
λ2

0

0 0 0 1
λ2




cos(0) sin(0)

cos(π2 ) cos(π2 )

cos(π4 ) sin(π4 )

cos( 3π
4 ) cos( 3π

4 )

 ,
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Our approach Numerical Results

Mississippian Sandstone dataset
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Figure: Mississippian Sandstone. (a) and (b) present the Mississippian Sandstone

dataset before and after pre-processing. (c) and (d) compare the φ value (in green) with

{φ(b)}200
b=1.

The P-values of Algorithm PB, NP and MS are: 0.93, 0.7 and 0.19, respectively.
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