
Bootstrap and Resampling Methods, fall 2012/3

Homework exercise 4

Due date: 29 January 2013 in my mailbox or by email to me

Submission format: Please include your code in your submission as an appendix. That is,
write a proper HW submission giving your results, tables etc. and separately print out and include
the code you used to generate the results.

1. Bagging and sources of prediction error.
Using the code linked from the class homepage, load the movies training data, and do the
following:

(a) Draw 50 random samples of size 1000. For each one, build a regression tree using
rpart(with parameters of your choice, but try to make the trees big). Apply all trees to
one random sample of 100 observations from the validation set. Estimate the prediction
error of your method by averaging the mean squared prediction error of the 50 × 100
predictions you observe. Estimate V ar(ŷ) at each of these 100 validation observations
using your 50 predictions in each one.

(b) Now, for each of the 50 random samples of size 1000, run 20 bagging iterations and build
a bagged prediction model. Repeat the calculations of the previous item on the same 100
validation observations. Estimate V ar(ŷ) for the bagged models in the same approach.
Also, estimate V ar(ŷ∗) at each of the 100 validation points (that is, empirically estimate
the variance of the predictions from the 20 different trees, and average these estimates
across the 50 samples).

(c) Compare the prediction errors with and without bagging, and compare the variance
of the different approaches, and the bootstrap-sampling-based variance. Discuss your
conclusions.

Note: It is important to compare all variances both at a specific validation observation (e.g.,
choose a few interesting ones and concentrate on them) and across all 100 observations chosen.

2. MCMC on normal distribution.
For a standard normal distributionN(0, 1), implement a Metropolis algorithm using aN(0, σ2)
“random walk” sampling function for different values of σ (in this mode, xnew = x(t) +
N(0, σ2)). Start all chains from a random draw from N(0, 1).

(a) Empirically estimate the autocorrelation curves for σ ∈ {1, 1.5, 2, 2.5, 3, 5, 10}. Plot them
(as a function of time) and discuss which one is best and why.

(b) With the same values of σ, calculate estimates of E(X4) for X ∼ N(0, 1), using MCMC
with n = {1000, 10000, 100000} samples.
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(c) Calculate the true expectation (integration in parts...) or find its true value, and compare
to your results above.

(* Extra credit) Can you design a different MCMC algorithm, not using the normal random
walk sampling, that will give guaranteed better estimates of E(X4)?
Hint: Think how to accomplish the lowest possible level of dependence between consecutive
samples.

3. Gibbs sampling on a binormal example.
Consider a simple bivariate normal distribution:

N

((
0
0

)(
1 0.5
0.5 1

))

Implement a Gibbs sampling approach to generate data according to this model using only
univariate random draws. That is, write down the conditional distribution X2 given X1 and
vice versa, and use this to performa Gibbs sampling. Perform 100 repetitions of random-
scan sampling (where you choose X1 or X2 randomly), and 100 of systematic-scan sampling
(where you alternate between drawing X1 given X2 and vice versa). Run all 200 of the Gibss
sampling experiments for 10000 iterations each, and use the resulting sequence to generate
200 estimates of

P (1 ≤ X2 ≤ 2|1 ≤ X1 ≤ 2)

Comparing to the true value of this probability, evaluate the performance of the two Gibbs
samplers in terms of bias and variance.
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