
Bootstrap and Resampling Methods, fall 2012/3

Homework exercise 3

Due date: 8 January 2013 in class or by email to me

Submission format: Please include your code in your submission as an appendix. That is,
write a proper HW submission giving your results, tables etc. and separately print out and include
the code you used to generate the results.

1. Problem 16.15 from the book: A different approach to testing the mean.
Suppose we have a sample z1, ..., zn and we want to estimate the underlying distribution
F restricted to have mean µ. One approach, used in Sec. 16.4, is to use the empirical
distribution of the translated data values zi − z̄ + µ. A different approach is to leave the
data values fixed, and instead change the probability pi on xi for each i to be different than
1/n. Let p = (p1, ..., pn) and let Fp be the “empirical” distribution putting probability pi
on xi. Then we want to choose p such that the mean of Fp =

∑
i pixi = µ and Fp is as

close as possible to the empirical distribution F̂ . A convenient measure of distance is the
Kullback-Leibler distance

dFp(Fp, F̂ ) =
n∑

i=1

pi log

(
1

npi

)
.

(a) Using Lagrange multipliers or any other way, show that the probabilities that minimize
this distance subject to

∑
pixi = µ and

∑
pi = 1 are given by

pi =
exp(txi)∑
i exp(txi)

when t is chosen such that
∑
pixi = µ. What can you say about t when µ > E(F̂ ), and

when µ < E(F̂ )? Interpret the resulting Fp.

(b) Use this approach to carry out a test of µ = 129 on the mouse treatment data (mouse.t
object in the package bootstrap). Compare the results to those obtained with the “stan-
dard” approach in Section 16.4.

2. Problem 17.8 from the book: Bootstrap .632.

(a) Carry out a bootstrap analysis with B = 100 for the hormone data (hormone object in
the package bootstrap) as in Table 17.1 in the book: calculate the estimate of prediction
error in the bootstrap world (col. 1), the error of each bootstrap model on its own sample
(col. 2) and the difference (col. 3). Use the results to calculate estimates of prediction
error in two ways: direct plug-in and by estimating the optimism.
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(b) Calculate the average prediction error ϵ̂0 for the observations that do not appear in each
bootstrap sample and hence compute the .632 estimator for these data.

(c) Calculate the average prediction error ϵ̂j for observations that appear exactly j times in
the bootstrap sample, for j = 0, 1, 2, .... Plot ϵ̂j against j and give an explanation for
the results.

3. Questions on Aya’s presentation.

(a) The Dirichlet prior argument.
Consider a simplified version of the situation in slides 41-44, where instead of multinomial
we have a binomial with π = (0.3, 0.7) and n = 50. The two-value version of Dirichlet is
the Beta distribution.

i. Draw three samples of size 100:

• From Binomial(50,0.3).

• From the appropriate Beta posterior when α1 = α2 = 0.

• From the Beta posterior when α1 = α2 = 10.

Draw the empirical cumulative distribution for the three samples and comment on
their similarities relative to Efron’s claims.

ii. Consider Efron’s model of the process as:

π → D → Tree → ψ,

whereD is the distance distribution. What part of this model do we need to generate
the sequences that are our observed data (hint: consider the meaning of π carefully)?
Does this model make sense as describing the way the “world works” and the data
are truly generated?

iii. (* Extra credit) Explain how the problem with this model implies that the prior
which has α1 = ... = αK = 0 does not make sense for this application

(b) The final algorithm.
Consider the algorithm Efron proposes on slides 60-65.

i. Explain the goal of the second bullet on slide 61 and relate it to the methodology
for hypothesis testing with bootstrap. In particular, explain the statement in the
third bullet. Propose another way to accomplish this goal.

ii. By analogy to the normal example given before, explain the meaning of the ratio
between the second and third columns in the table on slide 62 — how does it relate
to the shapes in Fig. 5 on slide 62? What does it mean for Felsenstein’s p-value —
is it too small or too big? Explain.
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