Bootstrap and Resampling Methods, fall 2012/3 Homework exercise 2

Due date: 11 December 2012 in class or by email to me

Submission format: Please include your code in your submission as an appendix. That is, write a proper HW submission giving your results, tables etc. and separately print out and include the code you used to generate the results.

- 1. Problem 11.13 from the book: Comparing bootstrap and jackknife empirically. Generate 100 random samples of size 20 from a normal populations $N(\psi, 1)$, with parameter $\psi = 1$.
 - (a) For each sample compute the bootstrap and jackknife estimate of $Var(\hat{\psi})$ for $\hat{\psi} = \bar{X}$. Compute the mean and the standard deviation of these variance estimates over the 100 repetitions.
 - (b) Repeat (a) for the (bad) estimate $\hat{\psi} = \bar{X}^2$ and compare the results. Give an explanation for your findings.

2. Comparing confidence interval methods.

Generate 100 random samples of size 20 from an exponential distribution exp (1). The true mean is $\psi = 1$. Compute 100 standard, bootstrap-t and percentile intervals, and describe their coverage behavior: how often does 1 fall below the lower limit, how often above the upper? Explain your results.

3. Problem 14.13 from the book: Behavior of BC_a acceleration values.

Using the formulas $z[\alpha]$ we derived in class, and assuming $\hat{z}_0 = 0$ and $\hat{\psi} = 0$, do the following:

- (a) Set $\hat{a} = 0$ and plot $z[\alpha]$ against α for 100 equally spaced values of α (between $\alpha = 0.005$ and $\alpha = 0.995$). Verify that $z[\alpha]$ is monotone in α , so the CI size increases as the confidence level increases (as expected).
- (b) Now repeat (a) for $\hat{a} = \pm 0.1, \pm 0.2, ..., \pm 0.5$. For what values of \hat{a} and α does $z[\alpha]$ fail to be monotone? Interpret this result.
- (c) To get some idea how large a value of \hat{a} one might expect in practice, generate a standard normal sample $x_1, ..., x_{20}$. Compute the acceleration \hat{a} for $\hat{\psi} = \bar{x}$. Create a more skewed sample by defining $y_i = \exp(x_i)$ and compute the acceleration \hat{a} for $\hat{\psi} = \bar{y}$. Repeat this for $z_i = \exp(y_i)$. Repeat the exercise 10 times and summarize the results. How large a value of \hat{a} seems likely to occur in practice?

4. **Problem 15.6 from the book: Uniformity of permutation p values under null.** The p values from a permutation test cannot have exactly a uniform distribution, because

there is a finite number of permutation, which we can denote by $M = \binom{n+m}{n}$. Show that:

$$\operatorname{Prob}_{H_0}\left\{\operatorname{ASL}_{\operatorname{perm}} = \frac{k}{M}\right\} = \frac{1}{M}, \text{ for } k = 1, 2, ..., M.$$