
Statistics of Big Data, Fall 2021-22

Class notes 4

Sources for today’s material:
The Algorithmic Foundations of Differential Privacy by Dwork and Roth
A Statistical Framework for Differential Privacy by Wasserman and Zhou

Summary

The mini-book by Dwork and Roth (D& R) has plenty more results, for example D& R describe
composition rules which demonstrate that if we have a sequence of noising mechanisms:

x → M1(x) → M2(M1(x)),

and the first mechanism is ϵ1-DP, while the second is ϵ2-DP, then the combined mechanism which
releases only M2(M1(x)) is ϵ1 · ϵ2-DP, which can be very useful in practice.

Summarizing our discussion of differential privacy:

1. Privacy is a real and important problem (see our discussion of GWAS and genetic information
release)

2. Differential privacy is theoretically elegant but often very conservative. One reason is the
requirement that the guarantees hold for every possible S ⊆ B.

3. The known ϵ-DP solutions lead to methods that are not practical for important problems like
GWAS. Note however that all we have are sufficient solutions which maintain ϵ-DP and not
optimal methods in provable senses. Also for problems of low dimension like releasing a single
average or noisy-max, the ϵ-DP solutions can be acceptable.

4. The basic approach is very “computer-science” oriented, for example it does not assume
any distribution over the population or for the sampling from NX , rather it requires that
the results hold for all possible values, and the only randomness comes from the reporting
mechanism M. Results like those of W&Z that we discuss later today add a level by assuming
iid sampling from a distribution and asking how good the results are as statistical estimates
of the population quantities.

5. The mathematical thinking behind ϵ-DP is useful for other statistical applications like mea-
suring and avoiding overfitting in repeatedly using the same data for estimation. We may
discuss this later in the course in the context of dealing with adaptive data analysis, as time
permits.
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https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pdf
https://www.tandfonline.com/doi/abs/10.1198/jasa.2009.tm08651


Example from Wasserman and Zhu: Estimating the full density while preserving
DP

Assume as before our data is x = (X1, ...Xn) with Xi ∼ F iid, now a multivariate distribution with
supp(F ) ⊆ [0, 1]r. We want to estimate the entire density of F.

The obvious non-private estimate is a histogram: Divide [0, 1]r into m = V r regions (each
dimension divided into V bins, say equal sized), and report a vector of length m of counts, denoted
F̂x. However we want to report Fx while maintaining ϵ-DP . The Laplace mechanism would require
adding Lap(m ·△f/ϵ) noise, and since m is exponential this can be huge and destroy the usefulness.

Instead, Wasserman and Zhou suggest using the exponential mechanism for releasing a “sample”
of length k: z = (Z1, . . . , Zk) that is “similar” to F̂x but private. Denote the empirical distribution
of Z by F̂Z , they propose to use distance between the distributions in the mechanism, for example
the Kolmogorov-Smirnov (KS) distance:

u(x, z) = KS(F̂x, F̂z) = max
y∈[0,1]r

|F̂x − F̂z|.

(Reminder: the KS distance of two one-dimensional cumulative distribution functions F,G is
supx∈R |F (x)−G(x)|, with a natural extension for multivariate cumulative distribution functions).
For this KS-based utility it is easy to verify that △u = 1/n, and therefore every set z should be
drawn with probability distribution:

h(z|x) ∝ exp

{
−ϵ · n ·KS(F̂x, F̂z)

2

}
,

and would preserve ϵ-DP .
Wasserman and Zhou compare this mechanism to adding noise to the histogram (as in the

Laplace proposal above) or pertrubing the histogram in other ways that preserve ϵ-DP , and con-
clude that this exponential mechanism is the best in the sense of convergence of the reported
histogram F̂z to the true distribution F :
Theorem (W&Z): If we choose k(n) to be big enough and use the KS exponential mechanism
above, then:

KS(F, F̂z) = Op

(
n− 1

3

)
.

This rate is faster than the other ϵ-DP methods above when the dimension r ≥ 5, although in this
case it is slower than reporting the noiseless histogram:

KS(F, F̂x) = Op

(
n− 1

2

)
.

Practical problem: Recall that this u function depends on the entire vector z of k observations,
it is not clear from the paper how such vectors can be practically drawn, whereas the less efficient
noising or pertrubation methods can be practically implemented ⇒ requires further research.

W&Z have plenty of other interesting results and analyses about the use of ϵ-DP in statistical
methodology, here is a very simple one which demonstrates the obvious fact that ϵ-DP destroys in-
formation on each specific subject in our data, and therefore precludes making confident conclusions
about them (good for privacy, bad for statistical inference!):
Theorem (W&Z): Assume again our data x is an iid sample of size n: Xi ∼ F and assume
we know F . We have an ϵ-DP mechanism M (and obviously we also know the distributions m
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underlying it). Now we observe released data M(x), then any test of H0 : Xi = U vs HA : Xi = V
at level α has most power α exp(ϵ).
Hence, not surprisingly it is impossible to obtain substantial power for testing whether a specific
observation is in the dataset.
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