
Statistics of Big Data, Fall 2021-22

Class notes 9

Multiple testing review

Reminder: Fθ an unknown distribution with parameter(s) θ, in hypothesis testing we choose be-
tween:

H0 : θ ∈ Θ0 (usually Θ0 = {θ0} a simple null) vs. HA : θ ∈ ΘA.

A statistical test at level α for this problem given data X ∼ Fθ (usually i.i.d sample) is defined
by a test statistics S(X) and a rejection region Cα such that

Pθ(S(X) ∈ Cα) ≤ α , ∀θ ∈ Θ0.

Defining a p-value: intuitively a p-value is the strength of evidence (“surprise”) against the null
hypothesis from the data. In case the null is simple and there is monotone likelihood ratio:

Pθ(X)

Pθ0(X)
↘ in S(X) ∀θ ∈ ΘA,

then we can define a p-value as the probability under the null of being above the observed value in
the data S(X).

p− val = Pθ0(S ≥ S(X)).

The rejection region at level α is simply the rule p− val ≤ α. Note that under the null the p-value
has a U(0, 1) distribution (by definition).

Power for a specific alternative is the probability of rejection if the alternative is true

Πθ = Pθ(S ∈ Cα) = Pθ(p− val ≤ α).

α the level of the test is a bound on the type-I error (probability of rejection if null is true).
Hypothesis testing is a major tool in science, and basically the goal is to define a null that is

“we discovered nothing” and if we succeed in rejecting the null, we have made a discovery and it
usually leads to a scientific publication (and maybe a Nobel prize...). So the goal of the scientist is
to reject nulls, but this has to be done while preserving validity and avoiding false discoveries

The setting of interest is when we have not a single hypothesis testing problem, but many
testing problems at once:

H0k : θk = θ0k HA : θk ∈ ΘAk k = 1, . . . ,K.

K can be in the hundreds, thousands or even millions (for example in GWAS).
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The critical point in multiple testing scenarios is that we now want to control some measure of
overall type-I errors. For example in GWAS, if we have a million hypothesis and we naively control
each test at level α = 0.05, it means that if all nulls are true (non-genetic phenotype) we expect
0.05× 106 = 5× 104 false discoveries — not an acceptable number!

Denote the total number of rejections out of the K tests by R and the total number of false
rejections (type-I errors) by V, then we can think of various notions of overall false discovery:

• Family-wise error rate FWER = P(V > 0) (closely related: E(V ) ). Note FWER ≤
E(V ) (why?). FWER is the probability of making even one false discovery in the entire
corpus. FWER is controlled at level α by the following simple idea: divide α into K pieces
α1, . . . , αK such that

∑
k αk ≤ α, then test H0k at level αk. Then it is trivial to see

FWER ≤ E(V ) =
∑
k

αk ≤ α.

Simplest implementation is Bonferroni’s correction where αk = α
K .

Critically this result does not depend on any assumption on the nature of the data and the
tests (for example, the test statistics for the different tests can be dependent in any form of
dependence), as long as all tests are marginally valid at the desired level αk

• False Discovery Rate (FDR). Controlling FWER might be too conservative in the follow-
ing sense: If we test K = 106 hypotheses and find 100 true discoveries, we can perhaps agree
to also have a few false ones, because most of our discoveries will be correct. This approach
would allow us to be less conservative and make more discoveries ⇒ publish more papers
and get more Nobel prizes, at the cost of a small number of errors (small = compared to the
number of discoveries made).

How can we be less conservative? The FDR idea is to control E(VR ) ≤ α. A main problem is
what happens when R = 0 (no discoveries). The controversial solution is to assume 0/0 = 0 an
so when we make no discoveries we do not contribute to this error. Why is this problematic?
Since the following policy controls FDR at level α: flip a coin with probability α, is it comes
out heads reject all K hypotheses, it tails reject none. Then with probability 1− α we have
R = V = 0 and with probability α we have V/R = 1.

For the case that the test statistics S1(X), . . . , SK(X) are independent, the most famous policy
for controlling FDR is the Benjamini-Hochberg (BH) approach, invented at TAU: given p-
values p1, . . . , pK , sort them in increasing order:

p(1) ≤ p(2) ≤ . . . ≤ p(K),

and define:

i∗ = max

{
i : p(i) ≤

α · i
K

}
,

and reject all hypotheses 1, . . . , i∗. This guarantees FDR control at level α.
Comments:

1. The Bonferroni policy is to reject if pk ≤ α/K which is the threshold for α(1) in BH, so
clearly BH always rejects more than Bonferroni

2. If all nulls H0k are true, then BH still controls FWER, even though it is more liberal
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3. Dealing with dependence: Benjamini and Yekutieli proved that if all the p-values are
positively correlated (makes sense for GWAS for example), then BH is still valid. If not,
they showed that the following more conservative policy guarantees FDR control under
general dependence: reject hypotheses 1, . . . , i∗ where:

i∗ = max

{
i : p(i) ≤

α · i
K · c(K)

}
, c(K) =

K∑
k=1

1

k
≈ log(K).

Because BH makes more discoveries than FWER control (and scientists care about discoveries
and publications!) the BH approach has been extremely influential and widely used

In the context of GWAS, the Genetic journals typically require a p-value threshold of 5× 10−8

for publication, which is essentially a Bonferroni correction for 106 tests. FDR based analysis is also
very popular (since the positive dependence assumption is usually reasonable), but the top journals
usually insist on the conservativeness of FWER control after many past “discoveries” turned out
to be false and set the area back many years.

Publication bias

In a big data world, many different scientists have large data sets and they perform research.
Now assume the following simple model of how a scientific community works:

1. A number of different groups (say 20) work independently on the same or very similar problem
(say GWAS on the same very important phenotype)

2. They each perform research that may include multiple testing on their data, and carefully
correct for multiplicity (say control FWER at level 0.05 using Bonferroni on their K hypothe-
ses)

3. Each group that got a significant result publishes, the ones that don’t move on to the next
project (do not publish failures)

Now we come next year and we see that one group published a paper with an important discovery.
If we know about the other 19 groups, we can calculate the FWER for the entire corpus of research
(assuming independence which is reasonable here):

P(any discovery if all nulls true) = 1− P(no discovery) = 1− (1− 0.05)20 ≈ 0.65,

so we conclude that there is not really a convincing discovery here. On the other hand in real life
we typically do not know about the unpublished failures, and so we do not know that FWER is
0.65 and not 0.05!

In the modern scientific world, this publication bias issue turns out to be a very substantial
concern and some claim that it threatens the validity of the entire paradigm of how research is
done. The most famous paper that makes this (and other) points is Why Most Published Research
Is Wrong by Ionides (2005).

Ideas for solution:

Publish every study, including ones that have negative results
⇒ we can calculate quantities like FWER across studies
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However, this is not how scientific publishing works...

Share data: In a modern big data world, perhaps we can encourage joint research by the entire
research community instead of 20 separate studies:

1. Collect data jointly to a central joint data repository

2. All research is done on the central repository, perhaps with a system where groups who give
more data will be allowed to “use” the data more

3. Control FWER or FDR across all use of the joint resource. Important aspect: If we are
serious about sharing data for scientific research, it may not be reasonable to assume that we
know in advance how many hypotheses (or even what kind of hypotheses) will be tested on
the joint resource.

A simple solution for point (3) is offered by α-Spending approaches that control FWER and E(V )
by building an infinite series: α1, α2, . . . such that:

K∑
k=1

αk ≤ α, .

and test the kth hypothesis at level αk. This simple Bonferroni-like approach guarantees FWER ≤
α for eternity.
An obvious problem: αk are getting increasingly tiny, having to decrease quadratically so the series
converges. Low level = low power of course.

So the question becomes: How can we implement the ideas in (1)-(3) above in a way that will
be fair, useful and encourage the scientists to participate?

The Quality preserving database

This is a schema to build and maintain a database for scientific research, assuring:

• Statistical validity of all the results being generated on the database

• Usefulness (=maintaining power) for later users

The main idea is to increase the data size as the database is used. In this way we can maintain
power even if the levels decrease!

Assume at time t we have data of size nt−1 and remaining α pool of α · qnt−1 for given some
fixed parameter q < 1, say q = 0.999. Then the tth test arrives, meaning a scientist has in mind:

• A pair of hypotheses about some parameter θ:

H0t : θ = θ0 , HAt : θ = θA.

Note this encodes what the test statistic is (through Neyman-Pearson or monotone likelihood),
and also what the effect size they think they will find is through θA.

• A desired power πt
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At this point we find ct such that:

αt = α · qnt−1(1− qct),

is an appropriate level for getting power πt for the desired test. v
Then after we perform the test and get ct more samples we have nt = nt−1 + ct samples and

remaining pool of:
α · qnt−1 − α · qnt−1(1− qct) = α · qnt−1+ct .

Hence by definition our pool will never run out.
Example of power calculation with nt samples and required effect size θt, in the simple normal

means case, with known variance σ2:

π(αt) = Pθt
(
X̄ ≥ Z1−αt

σ
√
nt

)
= Pθt

(
X̄ − θt

σ√
nt

≥
Z1−αt

σ√
nt
− θt

σ√
nt

)
=

= 1− Φ

(
Z1−αt

σ√
nt
− θt

σ√
nt

)
Theorem (Aharoni et al. 2011):

For many families of testing problems, including:

1. Any string of simple tests that use Neyman-Pearson

2. Tests of normal means

and many others, the simple recipe above guarantees that ct ≤ c0 is bounded in the following sense:
A test of a specific effect size θ̃ at a specific required power π̃ will never cost more than c0(θ̃, π̃)
samples at any time t.

In practice, this leads to diminishing and not only bounded costs.
Important conclusion: If you come later, you will gain power and/or money.

Dimensionality reduction introduction

Supervised learning: Y ≈ f(X) and want to predict, as we have discussed in GFT and high
dimensional modeling

Unsupervised learning: There is no Y, we want to model and learn things about our X ∈ Rp
vector, for example:

1. Clustering: Divide the Rp space into regions such that X has high density within regions and
low between them — these regions are the “typical” areas where X clusters.

2. Density estimation: The more ambitious goal here is to estimate the density function f(X)
from which X was generated. Compare this to the task of modeling P (Y |X) of supervised
learning, it is easy to be convinced that density estimation is a much harder problem — the
joint density of p coordinates has many more parameters and is much harder to estimate
(without extreme simplifying assumptions) than the conditional density of one given the
others.
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3. Dimensionality reduction: If we agree that estimation in high dimension is a tough problem
(for supervised and even more for unsupervised), then it seems reasonable to search for low
dimensional structure in our data. This is especially relevant if we are willing to assume that
such structure exists and captures most/all the relevant information. This is like the sparsity
assumption, now for unsupervised learning. The linear version of this searches for “interesting
directions” in Rp where most of the spread of the data is. The classical version is Principal
Component Analysis (PCA):

v̂1 = arg max
‖v‖=1

Xv

v̂2 = arg max
‖v‖=1,v⊥v̂1

Xv

...

The well known solution is that v̂1 is the eigenvector of XTX with the highest eigenvalue
(equivalently the right singular vector of X = UDV T with the highest singular value).

As statisticians we want to go beyond calculating things like the principal components to ask
statistical questions:

1. How are the top PCs and their eigenvalue distributed in different settings?

2. How can we know whether the top PCs capture “real” structure or noise in the data?

3. How do the answers depend on properties of the problem, especially n, p and their ratio?

This is the topic of next week’s lecture by Boaz Nadler from Weizmann Institute.
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