
Statistics of Big Data, Fall 2021-22

Class notes 8

Sources for today’s material:
survey by Goldberg et al. on statistical modeling of network data (that appeared
in 2010 in the Foundations and Trends in Machine Learning)
An explanation of the pseudo-likelihood approach by Staruss and Ikeda

Network data modeling (ctd.)

The p1 model of node properties and edge creation

Consider two nodes i, j and the four possible settings of the edges Yij ∈ {0, 1} , Yji ∈ {0, 1}, as a
function of the parameters of the network and the nodes:

• θ: overall rate of connections (like in Erdos-Renyi)

• αi : Expansiveness, measuring how friendly node i is

• βi : Popularity, measuring how attractive node i is

• ρ : Reciprocity, measuring how likely Yij = Yji is

We also have λij a normalization factor. In this setting we can write the four probabilities as a
function of the parameters:

log(Pij(0, 0)) = λij

log(Pij(1, 0)) = λij + αi + βj + θ

log(Pij(0, 1)) = λij + αj + βi + θ

log(Pij(1, 1)) = λij + αi + αj + βi + βj + ρ+ 2θ

where λij is such that the probabilities sum to 1.
Now note that if we choose ρ = 0 , αi = βi = 0 , ∀i, then we get the Erdos-Renyi model with

θ only (fixed probability).
To fit this model to data we would write the likelihood as a function of the parameters:

L(θ, α, β, ρ) = C(λ) +
N∑

i,j=1,i 6=j
yij(θ + αi + βj) +

∑
i<j

yij ∗ yji ∗ rho,
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if we ignore C(λ) =
∑

i,j λij , then this is an exponential family log-likeilhood and we can find

the MLE θ̂, α̂i, β̂i, ρ̂ with standard approaches. However this is not really accurate — the λij are
also unknown. However, they are not free parameters, rather complicated functions of the other
parameters that violate the exponential family assumption:

λij = −log (1 + exp(αi + βj + θ) + exp(αj + βi + θ) + exp(αi + αj + βi + βj + ρ+ 2θ)) .

Note also that α, β, θ are not identifiable in this setting, since we can take either all α, all β or θ
and add and subtract constants that sum to zero with no change in the model.

To obtain a proper maximum likelihood solution we can call on more complex optimization
approaches, specifically Markov Chain Monte Carlo (MCMC) that we may not have time to discuss
in this course that seek a good combination of the parameters for the full likelihood. A more
mainstream statistical approach is to use pseudo-likelihood. In this important family of approaches,
we define a function that we can optimize and is “similar” to the likelihood but simplified. The
main idea here is that if I am given Yji then the likelihood of Yij is simple and has a logistic form
that does not depend on the λ′s which cancel out:

P(Yij = 1|Yji) =
P(Yij = 1, Yji)

P(Yij = 1, Yji) + P(Yij = 0, Yji)
=

exp(λij + θ + αi + βj + Yji(θ + αj + βi + ρ))

exp(λij + θ + αi + βj + Yji(θ + αj + βi + ρ)) + exp(λij + Yji(θ + αj + βi))
=

exp(θ + αi + βjYjiρ)

exp(θ + αi + βj + Yjiρ) + 1
,

a regular logistic regression:

logit (P(Yij = 1|Yji)) = θ + αi + βj + Yjiρ,

with the linear constraints
∑

i αi =
∑

j βj = 0 for identifiability, which are not a problem (also
appear in regular logistic regression with intercept).

So now we have a standard logistic regression model as our maximum pseudo-likelihood solution,
and we can also apply the regular logistic regression inference: significance on the parameters, F-
tests for model selection, using of AIC and model selection criteria, etc. However, we should keep
in mind that there are major problems here:

• We are not doing maximum likelihood, but maximum pseudo-likelihood, so by definition there
is no guarantee that the theory on which ML inference is based is relevant. The help for the
pstar function we are using even includes a warning:

Estimation of p∗ models by maximum pseudo-likelihood is now known to be a
dangerous practice. Use at your own risk.

• Even if we accept the PML approximation, note that we have 2N + 2 parameters and N2

observations (edges) in a naive view, but typically the number of actual edges is more likely
O(N), in which case the ML asymptotics, which are for number of parameters fixed, number
of observations diverging, is not relevant anyway.
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The more general ERG-p∗ approach

So far the only complication we assumed is mutuality for directed graphs. Frank & Strauss consid-
ered a larger family of graphs, where the probability of an edge can depend on all edges that share
a node with it (rather than only the opposite edge between the two nodes). They showed that for
undirected graphs all these models can be written in general form:

P(Y = y) = exp

(
T (y)τ +

N−1∑
k=1

Sk(y)θk + ψ(θ, τ)

This is a model with N parameters where the summary statistics are:

• Sk(y), k = 1, . . . , N − 1 — the number of k-stars in the graph, where a k-star is a node
connected to k neighbors. 1-star is an arc, 2-star is a node with two arcs, etc.

• T (y) — the number of triangles (3-clicks) in the graph

This model is very general, but not so good to work with: the N parameters are a large number, and
the counts Sk are heavily dependent on each other, creating strong instability. We are also mostly
interested in directed graphs (although the mapping between models for directed and indirected is
usually simple).

As a practical approach inspired by this formulation, Wasserman & Patterson proposed the
general Exponential Random Graph (ERG) model, also called p∗. Instead of specifying the statis-
tics Sk, T above, they suggest a flexible framework where the user can define a set of statistics
u1(y), . . . , uk(y) with corresponding parameters θ1, . . . , θk and posit the model:

P(Y = y) = exp
(
θTu(y)− ψ(θ)

)
,

where ψ(θ) is a normalization term (like the λij above. The way to fit this model is with the same
pseudo-likelihood approach, where modeling P(Yij = 1|Y−ij) gives a simple logistic rergression in
the parameters θ. The problems with this approach include the unreliability of PML and the strong
dependence between summary statistics like number of k-stars. Some of the classical statistics that
are included in u(y):

1. Edges: The number of edges S1

2. Mutuality/reciprocity: The number of directed pairs as in p1

3. Stransitivity: the number of directed triangles in the graph

etc.

Latent space models

Now we switch to a different way of thinking about graphs. We assume the nodes have unobserved
latent variables which are locations in some latent space, and they affect the affinity between nodes
and their tendency to connect: closer nodes are more likely to connect. Formally, assume each
node i has a latent (unobserved) location Zi ∈ Rd, and there is some distance (say Euclidean) on
Rd such that P(Yij = 1) depends on D(Zi, Z, j).
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We may also assumed that each edge has observed covariates Xij , and nodes can have observed
covariates too, in which case we assume things like Xij = XT

i Xj .
In this model we assume that given the latent variables the edges are independent, and the

distribution has some parameters Θ:

P (Y |Z,X; Θ) =
∏
i 6=j

P(Yij |Zi, Zj , Xij ; Θ),

and typically assume simply a logistic model for the node probabilities:

logit (P(Yij |Zi, Zj , Xij ; Θ)) = α+ βTXij −D(Zi, Zj),

where D(Zi, Zj) = ‖Zi − Zj‖2 for example.
In the simple case that there are no observed features Xij this takes the form:

logit (P(Yij) = α−D(Zi, Zj).

Formally this ia missing data problem (since the Zi are unobserved). Solving this maximum
likelihood involves integrating over the unobserved variables, this is typically done by MCMC.
It can lead to parameter estimates α̂, β̂, but often we want to make use of these approaches for
clustering or other ways to learn about structures in the latent space. For this we can infer the
“likely” locations Zi from the MCMC and apply clustering to them.

A more direct approach is to assume that there is a natural clustering model that generated
the Zi’s and actually fit the parameters of this model as well as the parameters for P(y|Z) above.
The simplest and most common approach is a Gaussian Mixture Model (GMM) assumption: Zi ∼∑

k pkN(µk, σ
2
kI), which assumes a collection of spherical Gaussians generated the latent locations.

The number of Gaussians is the number of clusters, and we can think of this approach as combining
the latent space modeling approach with the GMM approach for clustering. This is the approach
of Handcock et al. (2002).

To figure out whether the model we found fits the data well, we have to consider both the GMM
likelihood of the locations we inferred (which now also has parameters) and the likelihood of the
observed data given the locations and parameters. We also have to penalize for the number of
parameters as we always do. The theory behind the approximations that Handcock et al. (2002)
employ is complex, but they come up with an approximate model selection measure based on BIC.
We will not go into details, but accept that these are usable but not very reliable measures of how
well the model fits and they can help us (together with visual and intuitive arguments) to find what
models fit our data.

Scale-free networks

There is strong folklore that large “natural” networks (the internet, Facebook...) have typical
properties:

1. Small number of nodes with a large or huge number of edges (“hubs”)

2. Most nodes have very few edges (long tailed phenomenon)

3. The few-edges nodes are strongly clustered (communities)
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It has been widely argued that for properties 1+2 a good fit is the scale-free model for the
number of edges of each node, where

P(X = k) ∝ k−γ ,

where 2 < γ ≤ 3 : note that for γ ≤ 2 there is no expectation, while for γ ≤ 3 there is no
variance. Hence we are assuming that these fat-tailed distributions in the scale-free network have
an expectation but no variance.

Why is this called scale-free? Note that with this form:

P(X = c · k)

P(X = k)
= c−γ ,

regardless of k, so the tail behavior is the same for small relative to medium, medium relative to
large, etc.

Other “soft” properties of scale-free networks:

1. Small world: there are short paths from each node to each node going through hubs

2. Robustness: deleting nodes does not hurt connectivity or typical path lengthes

3. Clustering: formation of tight communities

Assuming we accept the fundamental importance of scale-free graphs (today widely disputed),
we can ask what type of random processes can create such graphs? One important one is the
Preferential Attachment model of Barabasi-Albert (1999). This simple model evolves as:

• Start with a set of m0 nodes, randomly connected between them

• At stage N we add another node and connect it to m < mN existing nodes, with probability
that is proportional to the number of connections each of them already has:

pi ∝
ki∑
j kj

.

For this simple process they show:

• As the network grows we get P(k) ∝ k−3, at the edge of the range for scale-free.

• The length of an average path is about log(N)
log log(N) when the network has N nodes ⇒ a small

world.

As mentioned above, in recent years there has been extensive skepticism about the usefulness
of these models, and how well they fit real data.
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