
Statistics of Big Data, Fall 2021-22

Class notes 6

Sources for today’s material:
Least Angle Regression by Efron et al.(2004)
survey by Goldberg et al. on statistical modeling of network data (that appeared
in 2010 in the Foundations and Trends in Machine Learning)

LARS-Lasso: continuing algorithm discussion

For the penalized lasso formulations:

β̂pen(λ) = arg min
β
RSS(β) + λ

∑
j

|βj | , β̂con(s) = arg min
β:
∑

j |βj |≤s
RSS(β).

We reached the optimal solution conditions:

|β̂(λ)k| > 0 : XT·k(Y− Xβ) =
λ

2
sgn(β̂(λ)k) (1)

|β̂(λ)k| = 0 : |XT·k(Y− Xβ)| ≤ λ

2
(2)

|XT·k(Y− Xβ)| > λ

2
is impossible (3)

Thinking how to use this to track the optimal solution, we realized that:

• For large λ the solution is β̂(λ) ≡ 0

• As we decrease λ and attain equality 2|XT·j∗Y| = λ∗

2 , we get that for λ < λ∗, 4λ = λ∗ − λ we
have:

β̂j∗(λ) =
4λ

2‖X·j∗‖22
, β̂j = 0 ∀ j 6= j∗

• This is the case until equality in (2) is achieved for some j∗∗ 6= j∗ at some λ∗∗ < λ∗:

|XT·j∗∗(Y− β̂j∗(λ)X·j∗)| =
λ∗∗

2
.

• At this point, if we keep going condition (2) will be violated, so we need to recalculate the
direction using βj∗ , βj∗∗ to maintain equality condition (1) for both of them.

1

http://statweb.stanford.edu/~tibs/ftp/lars.pdf
http://arxiv.org/pdf/0912.5410v1.pdf

Instead of writing specifically the formula for this next stage, let’s treat it generically now as
an “induction” step. Assume that for some λ1 we have an optimal solution β̂(λ1) complying with
the conditions (1)-(3). We want to continue generating the solution for λ < λ1. Denote the set of
active variables that comply with condition (1) at λ1 by A :

A =
{
j : β̂(λ1)j 6= 0

}
,

and correspondingly by XA the relevant columns of X. We want to make sure we maintain (1) for
the set A as we change λ :

XTA
(
Y− XAβ̂(λ1 −4λ)A

)
=
λ1 −4λ

2
sgn(β̂(λ1)A)

XTA
(
Y− XA

[
β̂(λ1)A + (β̂(λ1 −4λ)A − β̂(λ1)A)

])
=
λ1 −4λ

2
sgn(β̂(λ1)A)

XTA
(
Y− XAβ̂(λ1)A

)
− XTAXA

(
β̂(λ1 −4λ)A − β̂(λ1)A

)
=
λ1
2

sgn(β̂(λ1)A)− 4λ
2

sgn(β̂(λ1)A),

In the last row we notice the first terms on LHS and RHS are equal by the optimality at λ1, denote
4β̂A = (β̂(λ1 −4λ)A − β̂(λ1)A) so we get the simpler characterization:

XTAXA4β̂A =
4λ
2

sgn(β̂(λ1)A) ⇒ 4β̂A =
4λ
2

(
XTAXA

)−1
sgn(β̂(λ1)A).

Critically, this last expression has the form: 4β̂A = 4λ
2 v for a fixed direction v that does not change

as λ changes. Hence we conclude that the solution β̂ is moving in a straight line as λ changes,
explicitly:

β̂(λ1 −4λ)A = β̂(λ1)A −
4λ
2

(
XTAXA

)−1
sgn(β̂(λ1)A)︸ ︷︷ ︸
vA

.

This makes sure condition (1) is maintained for A, but we also have to make sure we do not
violate condition (2) for j ∈ Ā :

−λ1 −4λ
2

< XT·j
(
Y− XAβ̂(λ1 −4λ)A

)
<

λ1 −4λ
2

.

Note that these are linear functions of 4λ, therefore finding for which 4λ we reach equality is
solving two linear equalities (only one will have a positive solution):

XT·j
(
Y− XAβ̂(λ1 −4λ)A

)
= ±λ1 −4λ

2
.

Denote the solution to this by 4λj , then we need to find the first (smallest) 4λ for which equality
is reached:

j∗ = arg min
j
4λj ,

and we know that at λ = λ1 −4λj∗ is the point where the active set will change:

A → A∪ {j∗},

and then we can recalculate the direction vA, and we have completed the induction step.

2

All in all, we have described the set of Lasso solutions
{
β̂(λ) : 0 ≤ λ <∞

}
through a collection

of knots ∞ > λ1 > λ2 > . . . > 0 such that for λj > λ > λj+1 we have

β̂(λ) = β̂(λj) +
λj − λ

2
vj .

In other words, the solution path is a collection of straight lines with direction vj , which change
direction everytime it reaches a knot. We also know that the set of active variables is monotone
increasing as we reach equality in (2) and add a variable each time.

The important benefits of this understanding of the Lasso algorithm:

1. Computational: For the algorithm as we described it so far there are the most min(n, p)
steps because we only add variables to A, and if n < p once we reach |A| = n variables,
we have that the columns of XA are a basis of Rn, so the correlations are maintained for all
variables. At each step we need to invert XTAXA with one more column in XA, and this can be
calculated efficiently based on the previous inverse (Sherman-Morrison-Woodbury) Lemma.
Solving the linear equalities to find 4λj∗ is cheap, and overall Efron et al.(2004) argue that
in this setting finding the entire Lasso pass has comparable computational complexity to
solving one OLS problem: O(npmin(n, p)). However, this is ignoring some complications we
will mention briefly below.

2. From a geometrical and statistical perspective, we can learn a lot about the Lasso and the
nature of its solutions from analyzing the solution path. For example, the LARS paper and
followup work have used it to analyze the connection between Lasso and Boosting — an
important modern approach to predictive modeling, which can be interpreted as an approxi-
mation of a LARS-Lasso algorithm in (very) high dimension.

3. It turns out that the pathwise approach can be expanded to other problems beyond this
simple Lasso, and yield computationally efficient and statistically insightful algorithms for
them as well. This has been done for Support vector machines (Hastie et al., 2004), and
investigated for general loss-penalty families (Rosset and Zhu 2007).

Our description touches on the main general aspects, but it is missing one important point: it is
not accurate to assume that variables only enter A as λ increases and never come out. The reason
is the term sgn(β̂(λ)A) which seems innocent, but is critical: It is possible and indeed happens that
as move in direction vA, some of the coefficients in A can cross zero! In this setting if we keep going
then (1) will no longer hold since it has the wrong (opposite) sign! It can be shown that in this
setting, the variable should come out of A and then the conditions will be maintained. In other
words variables can both enter and exit A. For the computational complexity it means in theory it
can be exponential instead of being OLS-like, and indeed some people have been able to come up
with exponential counter-examples (which are completely unrealistic as real data of course). The
bottom line is that the statement on OLS-like complexity can be inaccurate and in high dimension
very inaccurate, unfortunately.

Another point worth mentioning is the inclusion of a non-penalized intercept β̂0 — this does
not change the problem substantially and is easily added, but complicates notations.x

3

Network data modeling

A network or graph is a collection of N nodes and E arcs (directed or undirected) between then.
The type of questions we want to ask about networks:

1. The nature of the network and connections in it, for example:

• Is the network connected? What is the length of typical paths between connected nodes
(“small world”)?

• Is the network reciprocal: If a node points to others, do they point back to it? If it
points to many do many point back?

• Clusters and high connectivity groups

• Existence of “hubs” that are close to all

2. The connections between features or properties of the nodes or arcs and the nature of the
network: what makes you “popular” etc.

It goes without saying that the answers to questions like this are critical and useful in many areas
of science and business, increasingly so as networks (social and others) become central in our lives.

Erdos-Renyi-Gilbert model

This is the simplest and most classical analysis of networks, but still important and relevant. It
generally deals with undirected graphs, though the main results also apply to directed.

Assume a graph with N nodes and we randomly generate E undirected edges between pairs of
nodes. The formulation has two varieties:

• G(N,E): A random draw from all possible graphs with exactly E edges, each with probability:

1((N2)
E

) .
• G(N, p): Each of the

(
N
2

)
arcs is selected with equal probability p, so the probability of a

random graph with E edges is

pE(1− p)(
N
2)−E ,

while the overall probability of seeing exactly E edges is:

P(E) =

((N
2

)
E

)
pE(1− p)(

N
2)−E .

The main questions they asked about this graph is about the nature of connectivity in this
“symmetric” setting. This leads to some powerful and famous results. Denote by λ the average
rank for a node in this setting:

G(N, p) : λ(N) = Np(N) G(N,E) : λ(N) = 2
E(N)

N
,

Then Erdos-Renyi proved the following:

4

1. If λ(N) < 1 then as N → ∞ the size of all connected components is O(log(N)) with high
probability, meaning the graph will be totally fragmented and most nodes can reach only very
few others via the edges.

2. If λ(N)→ 1 then for large N there will (with high probability) be many components of size
O(N2/3), meaning the graph will still be highly fragmented, but each node can now reach a
decent number of other nodes via the edges.

3. If λ(N)→ c > 1 then there will (with high probability) be one huge component that contains
a positive percentage of the points (typically close to 100%), and all other components will
be tiny with O(log(N)) nodes. In practice, it means the graph is largely connected.

These results have been very influential, but they have some major simplifying assumption that
limit their practical utility. They ignore phenomena that are important and prevalent in real graphs
and networks:

• Some nodes are more central and connected than others (hubs)

• In directed graphs, pairs may have mutual relationship: if I have edge Yij from node i to node
j, it is likely to affect (typically make more likely) the edge Yji.

etc. To build more useful models we have to get away from the completely random assumption and
start considering these aspects.

The p1 model of node properties and edge creation

Consider two nodes i, j and the four possible settings of the edges Yij ∈ {0, 1} , Yji ∈ {0, 1}, as a
function of the parameters of the network and the nodes:

• θ: overall rate of connections (like in Erdos-Renyi)

• αi : Expansiveness, measuring how friendly node i is

• βi : Popularity, measuring how attractive node i is

• ρ : Reciprocity, measuring how likely Yij = Yji is

We also have λij a normalization factor. In this setting we can write the four probabilities as a
function of the parameters:

log(Pij(0, 0)) = λij

log(Pij(1, 0)) = λij + αi + βj + θ

log(Pij(0, 1)) = λij + αj + βi + θ

log(Pij(1, 1)) = λij + αi + αj + βi + βj + ρ+ 2θ

where λij is such that the probabilities sum to 1.
Now note that if we choose ρ = 0 , αi = βi = 0 , ∀i, then we get the Erdos-Renyi model with

θ only (fixed probability).

5

To fit this model to data we would write the likelihood as a function of the parameters:

L(θ, α, β, ρ) = Const+

N∑
i,j=1,i 6=j

yij(θ + αi + βj) +
∑
i<j

yij ∗ yji ∗ rho.

This is an exponential family log-likeilhood and we can find the MLE θ̂, α̂i, β̂i, ρ̂ with standard
approaches.

6

