
Statistics of Big Data, Fall 2021-22

Class notes 6

Sources for today’s material:
Chapters 2-3 of the Elements of Statistical Learning by Hastie et al.
Review by Rosset (2013) on ptactical sparse modeling
Least Angle Regression by Efron et al.(2004)
Candes et al. (2005)
Meinshausen and Yu (2009)

Compressed sensing

Let’s start with a problem formulation from signal processing (SP) rather than statistics/ML, in
the following setup:

1. We have a large basis/dictionary of size p, that is as usual Xi ∈ Rp

2. Our signal is an exact linear function of X, that is Y = XTβ

3. β is a sparse vector with ‖β‖0 ≤ k <<< p

In this setting, if we observe n = p training observations, then regardless of sparsity we can
solve n equations with p = n unknowns Y = Xβ and get the true β (assuming X is full rank).
Having n << p observations seems hopeless, but it is not because we also know there is sparsity.

Naively, if we observe only n = k training observations, then for the correct set of k coordinates,
denote it I, solving: Y = X·IβI will give the correct solution, and all other subsets of size k will
not give a solution! So we can solve this using only k <<< p observations, at the cost of having to
try an exponential

(
p
k

)
number of possible models.

The fundamental result of compressed sensing is that with n ≈ k (a bit bigger), we can solve
the following single convex problem in p-dimensional space:

min ‖β‖1 s.t.‖Y− Xβ‖ = 0,

(that is, finding the minimum `1 norm interpolator) will give the correct solution with k-sparsity
with high probability. In other words, using `1 efficiently solves the problem that can be only
impractically solved with `0.

This is the initial statement in Donoho and Candes and Tao’s work that rocked the world about
15 years ago.

To adjust this to our setting of interest, we have to get rid of assumptions 1, 2 above: deal with
having noise, and not having a predetermined basis (or control of X as sometimes assumed in SP).

1
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http://statweb.stanford.edu/~tibs/ftp/lars.pdf
https://statweb.stanford.edu/~candes/software/l1magic/downloads/papers/StableRecovery.pdf
https://projecteuclid.org/journals/annals-of-statistics/volume-37/issue-1/Lasso-type-recovery-of-sparse-representations-for-high-dimensional-data/10.1214/07-AOS582.full


The next step is adding noise so that Y = Xβ + ε, while still controlling X. Candes et al. showed
that if we get to choose X in a smart way and n = O(k log p) then solving:

min ‖β‖1 s.t.‖Y− Xβ‖2 ≤ ε0,

will give the correct sparsity pattern (and close to accurate values of β) with high probability.
Note that this is already a Lasso formulation exactly, through the Lagrange form:

β̂ = min ‖β‖1 s.t.‖Y− Xβ‖2 ≤ ε0 ⇔ β̂ = min ‖Y− Xβ‖2 s.t. ≤ ‖β‖1 ≤ δ0,

for some mapping ε0 ⇔ δ0 (that is problem dependent, but exists).

However, we are focused on also not controlling X but observing it, in addition to also having
noise. It turns out that also in this setting we can replace controlling X with making assumptions
on X and still be able to obtain pretty strong results. Our setting of interest here:

1. Y = Xβ + ε

2. ‖β‖0 = k <<< p

3. An additional assumption that the columns of X are weakly correlated. This assumption
has different names in different papers: Irrepresentability in Meinshausen and Yu (2009),
incoherence in Candes and Plan (2009) etc. It essentially assumes that the k non-zero columns
of X have low correlation or inner product with the p − k columns that correspond to zero
coordinates of β.

Under these assumptions they were able to prove that if we only observe n = O(k log p) << p
observations, there is a Lasso solution that gives the correct sparsity pattern with high probability:

β̂ = ‖Y− Xβ‖22 + λ0‖β‖1 ⇒
∣∣∣{j : βj 6= 0}4{j : β̂j 6= 0}

∣∣∣ = 0 w.p. 1− δ.

The importance of the last condition on incoherence is clear: if columns j1, j2 are too similar
it is inherently hard to determine if βj1 6= 0 or βj2 6= 0, so keeping the correlation low is critical to
be able to use the compressed sensing paradigm in predictive modeling! Remember we still have
to find a needle of size k in a haystack of size p.

Summary of sparsity modeling discussion

We have discussed various methods for dealing with n << p under various assumptions. In general
we have to ask ourselves two main questions:

• How sparse is the true model? If k ≈ 1 is extremely sparse, we can still hope to do a
combinatorial search over all

(
p
k

)
possible models and solve the `0 problem. If k <<< p but

beyond combinatorial search we have to add assumptions on correlation.

• How correleated/coherent etc. are the columns of X? If they are essentially uncorrelated, then
we can use marginal regression as we discussed last week (and then sparsity is less critical).
If they have low correlation (“incoherence”) then sparsity is critical and we are in the sweet
spot of compressed sensing with n = O(k log p) observations.
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This is summarized in the following plot from Rosset (2013):
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Back to Lasso: Statistical properties and computation

The lasso formulations:

β̂pen(λ) = arg min
β
RSS(β) + λ

∑
j

|βj | , β̂con(s) = arg min
β:
∑

j |βj |≤s
RSS(β).

Unlike ridge it does not have an algebraic solution (for example, the penalized Lagrange version
is not differentiable). A key observation is that this is now a quadratic programming (QP) problem,
with quadratic objective and linear constraints. This can be seen from the constrained version,
which can equivalently be written as:

min RSS((β+ − β−)

s.t.
∑
j=1p

β+j + β−j ≤ s

β−j , β
+
j ≥ 0∀j,

(the problems are equivalent since in the optimal solution, it is guaranteed that either β+j = 0 ⇒
βj = −β−j or β−j = 0⇒ βj = β+j .)
Since QP is a standard problem in convex optimization, standard solvers can be used for Lasso (and
in fact the original paper by Tibshirani(1996) proposes a special QP variant that fits the structure
of this problem).

However, in the early 2000’s several groups realized that the problem can be solved with linear
algebra tools, by following the set of solutions to the penalized problems β̂pen(λ), 0 ≤ λ < ∞.
We will present this approach, best known by the name Least Angle Regression (LARS), as it is
interesting both for computation and statistical interpretation.

Define for simplicity of notation PRSS(β) = RSS(β) +λ
∑

j |βj | the penalized objective. Note
that if we evaluate PRSSS(β) at a value where βk 6= 0 then the function is differentiable in the
kth coordinate:

∂PRSS(β)

∂βk

∣∣∣∣
βk>0

= −2
∑
i

Xik(Yi −
∑
j

Xijβj)︸ ︷︷ ︸
Lk(β)

+λ

∂PRSS(β)

∂βk

∣∣∣∣
βk<0

= Lk(β)− λ

This already means that if β̂(λ) is an optimal solution and β̂k > 0 we have:

∂PRSS(β)

∂βk

∣∣∣∣
β=β̂

= Lk(β̂) + λ = 0 ⇒ XT·k(Y− Xβ) =
λ

2
,

and similar with opposite sign for the case β̂k < 0.
What happens if βk = 0? This is a non-differentiability point of the penalty, however we know

what happens to the derivative if we go either left or right, it will attain one of the values above,
in other words we can write informally the sub-differential formula:

−λ ≤ Lk(β̂) ≤ λ.
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Since in the optimal solution the sub-differential contains 0, we know that by definition if β̂k = 0
it implies:

Lk(β̂)− λ ≤ 0 ≤ Lk(β̂) + λ ⇒ |Lk| ≤ λ.

Note that |Lk| > λ is not possible for an optimal solution (makes sense — it means that we can
gain a lot from changing this coordinate, more than the penalty cost).

Summarizing the optimal solution conditions:

|β̂(λ)k| > 0 : XT·k(Y− Xβ) =
λ

2
sgn(β̂(λ)k) (1)

|β̂(λ)k| = 0 : |XT·k(Y− Xβ)| ≤ λ

2
(2)

|XT·k(Y− Xβ)| > λ

2
is impossible (3)

For those who learned optimization, this will seem familiar as the stationarity + complementary
slackness KKT conditions.

Now, we want to use this understanding to find an efficient way to “track” the set of solutions{
β̂(λ) : λ ∈ R+

}
— solve not a single QP but a continuum of QPs using the algebra and geometry

of the problem.
If we start from λ = ∞, we know that only (??) can hold by definition, so not surprisingly

β̂(λ) ≡ 0. Now we decrease λ, when will something interesting happen? When we reach:

λ∗ = max
k

2|XT·kY|,

because then if we keep decreasing λ we will violate (??). Denote j∗ = maxk 2|XT·kY| So now we

need to start changing β̂j∗ when λ = λ∗ to preserve (??). For λ < λ∗ we need to have condition
(??) continue to hold:

XT·j∗(Y− Xβ) =
λ

2
sgn(β̂(λ)j∗)

(assume WLOG positive sign) XT·j∗Y− XT·j∗Xβ =
λ

2

β̂j∗(λ) =
λ∗ − λ

2XT·j∗X·j∗
=

λ∗ − λ
2‖X·j∗‖22

,

so we know exactly how to proceed for now, and will keep going while condition (??) holds:

|XT·k(Y− β̂j∗(λ)X·j∗)| < λ

2
∀k 6= j∗.
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