
Statistics of Big Data, Fall 2021-22

Class notes 5

Sources for today’s material:
Chapters 2-3 of the Elements of Statistical Learning by Hastie et al.
Review by Rosset (2013) on ptactical sparse modeling
Candes et al. (2005)
Meinshausen and Yu (2009)

Introduction: the p >> n conundrum

Predictive modeling setup: we have a data model Pr(X,Y ) with X ∈ Rp explanatory variables,
Y ∈ R response. Our goal is to represent Y ≈ f̂(X) so in the future we see X only and predict
Ŷ = f̂(X).

Predictive modeling goals:

1. Predict well: choosef̂(X) so that indeed when we get a new prediction point x0 we will
have a good prediction, i.e. Ŷ0 = f̂(x0) ≈ Y0 the true value of Y at this point. If we write
Y = E(Y |X) + ε, where by definition E(ε) = 0, then for squared loss the best possible model
is f̂(X) = E(Y |X).

2. Learn about the nature of the connection between X and Y , such as which coordinates of
X are actually important for modeling the relationship. Typical example: assume a linear
model Y = Xtβ+β0 + ε, and we want to learn about β : which coordinates are non-zero, etc.

As mentioned, we write Y = E(Y |X) + ε and typically assume that ε ∼ (0, σ2) is independent
of X. We sometime also assume normality: ε ∼ N(0, σ2).

We assume we are given a training set of n pairs T = {(Xi, Yi)}ni=1 := (Xn×p,Yn×1) sampled

i.i.d from Pr(X,Y ), and want to use T to learn our model f̂(X) or properties of E(Y |X).
A generic description of the predictive modeling process is given in Fig. 1.

Sources of randomness in the data:

• The training set T is random ⇒ f̂ is a random function that depends on T .

• The new observation Xnew for prediction

Note the prediction Ŷ new = F̂ (Xnew) has randomness from both sources.
Criteria for quality of model-building black-box:

1. Accuracy in prediction, for example:

Expected pred. err.(EPE) = EX,Y,Xnew,Ynew(Y new−Ŷ new)2 or MSE = EX,Y,Xnew(E(Y |Xnew)−Ŷ new)2,

with the simple connection MSE = EPE − σ2 (the variance of ε).
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Figure 1: generic description

2. Quality of estimation of parameters or function properties: Assume again (as an example)
the linear model E(Y |X) = XTβ, and that the fitted model is also linear f̂(x) = xT β̂. Then
the quality of estimation can be measured in various ways:

• MSE in estimation: EX,Y‖β − β̂‖2, which is closely related to the prediction MSE.

• Ability to identify the important coordinates in β. For example, we may assume ‖β‖0 =
k << p, that only a small number of variables have non-zero coefficients, and may ask
whether the modeling approach does well in identifying these coordinates through the
symmetric difference:

E
∣∣∣{j : βj 6= 0}4{j : ˆbetaj 6= 0}

∣∣∣ .
GWAS as a p >> n problem

In GWAS, we have p ≈ 106 SNPs measured for n ≈ 104 people with Xij ∈ {0, 1, 2}, and YiR a
quantitative phenotype (say height). In our context we write Y = E(Y |X) + ε, where E(Y |X) can
be thought of as the genetic component of the phenotype.

Adding a linear model assumption we get E(Y |X) = XTβ. This assumes that all the genetic
factors have a linear and additive effect (so Xij = 2 has a double effect on height compared to
Xij = 1). We also invariably assume ε ∼ (0, σ2) is independent of X.

In this context we can think of the prediction problem: estimate β̂, then given the genotype of
a new individual Xnew, predict them Ŷ new = Xnew,T β̂, as accurately as possible.

Often more interesting is the estimation/interpretation problem: identify which are the impor-
tant SNPs with big |βj | and/or estimate their effects accurately, or sometimes quantify the overall

contribution of genetics to the phenotype: V ar(E(Y |X))
V ar(Y ) .

Linear regression with p >> n

The simplest approach we know for building a linear model is least squares regression on the training
data:

β̂LS = arg min
β
‖Y− Xβ‖22 =

(
XTX

)−1XTY ⇒ f̂LS(X) = XT
(
XTX

)−1XTY.
A problem: If p > n then rank(XTX) ≤ n so XTXp×p is not invertible and the least squares

solution is undefined. In other words Xβ = Y is a collection of n equations with p unknowns that
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has many different interpolating solutions that give ‖Y− Xβ‖22 = 0.
Approaches to dealing with this p >> n scenario:

1. Marginal regression: Instead of thinking of this as one big regression with p variables,
think of it as p small regressions with one variable each (with or without intercept), as in the
GFT example:

No intercept: β̂j =
XT·,jY
XT·,jX·,j

With intercept: Define Xj = {1nX·,j} ,
(
β̂0j
β̂1j

)
=
(
XTj Xj

)−1XTj Y , or: β̂1j =
ˆcor(X·,j ,Y)ŝd(Y)

ŝd(X·,j)
.

Important observation: if p < n and X columns are orthonormal then XTX = Ip and marginal
regression (with no intercept) is identical to regular LS regression (with no intercept). In the
p > n setting we can still preserve the intuition coming out of this: if the columns of X are
weakly correlated then also for p > n marginal regression can give good results since it is not
ignoring strong colinearity effects between the covariates.

This can be considered quite relevant to GWAS, where under some assumptions, the correla-
tion structure (linkage disequilibrium) is such that cor(X·,j ,X·,k) ≈ 0 for j, k that are not too
close on the genome. For example, it is often reasonable to assume that out of the p = 106

SNPs, we have that if |j−k| > 100 then cor(X·,j ,X·,k) ≈ 0. Then one option is to do “hybrid”
marginal regression where instead of building models for one SNP every time, we can do it
for say 100 SNPs every time (still much less than all 106 simultaneously).

A more striking equivalence can be demonstrated if we add another (reasonable) assumption
to the GWAS analysis: that among every 100 consecutive SNPs there is at most one that has
a real effect (βj 6= 0 for the true model of E(Y |X)). So in this setting our problem is reduced
to: among every 100 consecutive SNPs find the one that is the true effect (or discover that
there are none). We can think of this as a statistical testing/estimation problem. Let’s add
the normality assumption: ε ∼ N(0, σ2). Now we can employ a maximum likelihood approach
to estimating the vector β of length 100 under the restriction that only one of its coordinates
is non-zero:

ĵ = arg max
j∈{1...100},βj

L(X,Y;βj) = arg min
j,β0j ,β1j

‖Y− XTj βj‖22,

where we use the fact that the normal log-likelihood is just the (negative) sum of squares with
additional terms that are fixed in this setting. In other words, in this setting the problem
of finding the ML candidate for the associated SNP boils down to finding the best marginal
regression solution among all 100.

Conclusion: under these “reasonable” assumptions:

• Linear model with normal errors

• Only short term correlation

• Sparsity: in a strongly correlated set there cannot be more than one true effect

we get that marginal regression is the right solution for both estimation and prediction in
GWAS! For prediction in this setting, we would choose the best j in each 100 set and simply
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build a model summing up the marginal regressions on these chosen SNPs (since now we have
no correlation between them).

2. Regularized regression: In this approach we limit the complexity of the solutions β̂ that
we allow, achieving two goals:

• Making sure the problem has a mathematical solution (unlike least squares for p > n)

• Controlling and reducing the variance (recall the variance-bias tradeoff)

The most common family of regularization approaches is based on norms of the coefficient
vector ‖β‖q (usually limited to q ∈ {0, 1, 2}, and can be formulated as either constrained or
penalized optimization problems:

Constrained: β̂con(s) = arg min
‖β‖q≤s

‖Y−Xβ‖2 , Penalized:β̂pen(λ) = arg min
‖β‖
‖Y−Xβ‖2+λ‖β‖q.

The two formulations are generally equivalent (Lagrange form of each other), in the sense
that for each s there is λ such that β̂con(s) = β̂pen(λ). We will use them exchangeably as
convenience will dictate.

We can interpret the different norms graphically, it is easiest in the constrained setting, with
s = 1, p = 2:

• q = 0 (variable selection) gives mass only along the axes — it selects exactly one variable
of the two to have β̂ 6= 0

• q = 1 (Lasso) gives constraint |β1|+ |β2| ≤ 1 — a diamond shape

• q = 2 (Ridge) gives constraint β21 + β22 ≤ 1 — a two-dimensional ball

Once we add regularization, our regularized optimization problems generally have a solution
also for the p > n case, in particular the penalized form fpr q ∈ {1, 2} always has an optimal
solution. We will demonstrate it through ridge regression:

β̂(λ) = arg min
‖β‖
‖Y− Xβ‖2 + λ‖β‖22 =

(
XTX + λIp

)−1XTY,
which is always defined since rank

(
XTX + λIp

)
) = p for any λ > 0.

However for dealing with sparsity in high dimension, ridge is less relevant, we will focus here
on q ∈ {0, 1}:
q = 0: variable selection. The constrained version explicitly tells us that we can have only
s non-zero coefficients in our solution β̂(s). If we think or know that the true β is also sparse,
it seems natural to apply this constraint to our calculated solution. However, the problem
is computationally difficult because the constraint ‖β‖0 ≤ s is not a convex region, and so
convex optimization approaches are not relevant, and instead we need to take a combinatorial
approach to finding an optimal solution: Enumerate over all

(
p
s

)
possible sets of s variables.

Simple approximation using Stirling’s formula gives us:(
p

s

)
=

p!

s!(p− s)!
≈
(p
s

)s
,
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which diverges very quickly and is not practical already for p = 106, s = 3 in the GWAS
context.

There are various approximations for the q = 0 case, like Forward Selection and Backward
Elimination, but there are no guarantees that they will reach the optimal (or even a good)
solution, especially in complex correlation scenarios.

q = 1: Lasso. This is a hugely important problem formulation in modern data analysis,
and in particular in the p > n and sparsity case. This formulation has several interesting
properties:

• The problem is convex, and a key observation is that this is now a quadratic programming
(QP) problem, with quadratic objective and linear constraints. This can be seen from
the constrained version, which can equivalently be written as:

min RSS((β+ − β−)

s.t.
∑
j=1p

β+j + β−j ≤ s

β−j , β
+
j ≥ 0∀j,

(the problems are equivalent since in the optimal solution, it is guaranteed that either
β+j = 0⇒ βj = −β−j or β−j = 0⇒ βj = β+j .)
Since QP is a standard problem in convex optimization, standard solvers can be used for
Lasso (and in fact the original paper by Tibshirani(1996) proposes a special QP variant
that fits the structure of this problem).
We will discuss the LARS algorithm which takes a different approach in a week or two.

• A key property of Lasso solutions is sparsity. This has several expressions:

– In the high dimensional regime p > n, Lasso solutions always have at most n non-
zero coefficients: ‖β̂(λ)‖0 ≤ n. This is in contrast to Ridge regression, where all
coefficients are always non-zero.

– In the low dimensional regime p < n, it is still true that for λ >> 0 heavy Lasso
regularization, we will have ‖β̂(λ)‖0 << p, many zero coefficients (again, in contrast
to Ridge and other methods).

In other words, Lasso is a different way to get variable selection and sparsity without
explicitly requiring them with q = 0.

• Compressed sensing: The area of Compressed Sensing, which was extremely widely
studied around 2005-2010, shows that under some assumptions:

– The true model is linear E(Y |X) = Xtβ, and it is sparse ‖β‖0 = k << p.

– The explanatory variables (columns of X) have low correlation between them.

– The amount of data we have is n = O(k log p) (which is still << p when the model
is very sparse).

then using Lasso we can find with high probability the true sparsity pattern (that is,
β̂(λ)j 6= 0 ⇔ βj 6= 0). However, due to the strong assumptions this intriguing area is
not necessarily relevant to our settings of interest.
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