
Statistics of Big Data, Fall 2021-22

Class notes 4

Sources for today’s material:
The Algorithmic Foundations of Differential Privacy by Dwork and Roth
A Statistical Framework for Differential Privacy by Wasserman and Zhou

The exponential mechanism

Assume now we also have a utility function:

u : NX ×B −→ R,

where u(x, l) is a measure of how much utility we get out of reporting l when the true data is x.
For example, if we want to report the average of the data x̄, the utility might be:

u(x, l) = −‖x̄− l‖qq,

where q = 1 gives absolute error and q = 2 squared error. This mechanism allows us to combine
adding noise to preserve privacy with not hurting the utility too much and preserving the “relevant”
information.

As before, define the sensitivity:

4u = max
l∈B

max
‖x−y‖1≤1

|u(x, l)− u(y, l)| ,

the maximal possible difference in utility of the same reported result between neighbors.
Now given x we want our randomized algorithm to prefer l’s for which the utility l(x, u) is

high, unlike in Laplace where we added completely random noise. Therefore we will give higher
probability to high utility outcomes, specifically the exponential mechanism with utility u and
privacy parameter ε, denoted ME,u,ε uses the following distribution:

P(ME,u,ε(x) = l) ∝ exp

{
εu(x, l)

24u

}
.

(Note it is proportional and not equal since the quantity on the right is generally not a distribution.
Theorem: The exponential mechanism ME,u,ε preserves ε-DP for any mechanism u.
Intuition of proof: If the quantity on the right was indeed a distribution, i.e.:

P(ME,u,ε(x) = l) = exp

{
εu(x, l)

24u

}
,
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then we would have:

log

(
P(M(x) = l)

P(M(y) = l)

)
= ε

u(x, l)− u(y, l)

24
≤ ε

2
,

and we would have ε/2-DP. Since it is not equal but proportional, both sides have to be divided
by the sums over l, and using the definition of 4u again gives the other ε/2.
Example: reporting the mean. Assume our data x = (X1, . . . Xn) is and iid sample of size n
from some distribution F and we want to report the mean f(x) = X̄ as an estimate of µ = EF in
a private manner. Assume also the support of F is finite, say Xi ∈ [0, 1]. We could use the Laplace
mechanism, it is easy to see:

4f =
1

n
⇒ ML,ε(x) = X̄ + Lap(

1

nε
⇒ P(ML,ε(x) = l) ∝ exp

{
−n · ε · |X̄ − l|

}
.

On the other hand, we could apply the exponential mechanism with u(x, l) = −|X̄ − l|, then
we get:

4u = max
l

max
‖x−y‖1=1

| |X̄ − l| − |Ȳ − l| | ≤ max
‖x−y‖1=1

|X̄ − Ȳ | = 1

n
,

and we get a similar but slightly worse result that:

P(ML,ε(x) = l) ∝ exp
{
−n · ε

2
· |X̄ − l|

}
,

equivalent to adding Lap(2/(nε)) with bigger variance.
A more interesting application of the exponential mechanism would use u(x, l) = −(X̄− l)2 the

Euclidean distance. In this case we can similarly show that δu ≤ 1/n and therefore the exponential
mechanism would give:

P(ML,ε(x) = l) ∝ exp
{
−n · ε

2
· (X̄ − l)2

}
,

meaning we know that it has a normal distribution:

l|x ∼ N(X̄,
1

nε
⇒ l ∼ N

(
µ,

1

n

(
1

ε
+ σ2

))
,

where the last step shows the unconditional distribution of l as an estimate of µ.
We therefore conclude that l = µ + Op(1/

√
(n)), so the convergence rate of l to µ is the same as

that of the average X̄, even if its variance is bigger.

Example from Wasserman and Zhu: Estimating the full density while preserving
DP

Assume as before our data is x = (X1, ...Xn) with Xi ∼ F iid, now a multivariate distribution with
supp(F ) ⊆ [0, 1]r. We want to estimate the entire density of F.

The obvious non-private estimate is a histogram: Divide [0, 1]r into m = V r regions (each
dimension divided into V bins, say equal sized), and report a vector of length m of counts, denoted
F̂x. However we want to report Fx while maintaining ε-DP . The Laplace mechanism would require
adding Lap(m ·4f/ε) noise, and since m is exponential this can be huge and destroy the usefulness.

Instead, Wasserman and Zhou suggest using the exponential mechanism for releasing a “sample”
of length k: z = (Z1, . . . , Zk) that is “similar” to F̂x but private. Denote the empirical distribution
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of Z by F̂Z , they propose to use distance between the distributions in the mechanism, for example
the Kolmogorov-Smirnov (KS) distance:

u(x, z) = KS(F̂x, F̂z) = max
y∈[0,1]r

|F̂x − F̂z|.

(Reminder: the KS distance of two one-dimensional cumulative distribution functions F,G is
supx∈R |F (x)−G(x)|, with a natural extension for multivariate cumulative distribution functions).
For this KS-based utility it is easy to verify that 4u = 1/n, and therefore every set z should be
drawn with probability distribution:

h(z|x) ∝ exp

{
−ε · n ·KS(F̂x, F̂z)

2

}
,

and would preserve ε-DP .
Wasserman and Zhou compare this mechanism to adding noise to the histogram (as in the

Laplace proposal above) or pertrubing the histogram in other ways that preserve ε-DP , and con-
clude that this exponential mechanism is the best in the sense of convergence of the reported
histogram F̂z to the true distribution F :
Theorem (W&Z): If we choose k(n) to be big enough and use the KS exponential mechanism
above, then:

KS(F, F̂z) = Op

(
n−

1
3

)
.

This rate is faster than the other ε-DP methods above, although in this case it is slower than
reporting the noiseless histogram:

KS(F, F̂x) = Op

(
n−

1
2

)
.

Practical problem: Recall that this u function depends on the entire vector z of k observations,
it is not clear from the paper how such vectors can be practically drawn, whereas the less efficient
noising or pertrubation methods can be practically implemented ⇒ requires further research.

W&Z have plenty of other interesting results and analyses about the use of ε-DP in statistical
methodology, here is a very simple one which demonstrates the obvious fact that ε-DP destroys
information on each specific subject in our data, and therefore precludes making confident conclu-
sions about them (good for privacy, bad for statistical inference!): Theorem (W&Z): Assume
again our data x is an iid sample of size n: Xi ∼ F and assume we know F . We have an ε-DP mech-
anismM (and obviously we also know the distributions m underlying it). Now we observe released
data M(x), then any test of H0 : Xi = U vs HA : Xi = V at level α has most power α exp(ε).
Hence, not surprisingly it is impossible to obtain substantial power for testing whether a specific
observation is in the dataset.

Summary

Both our sources, especially the mini-book by Dwork and Roth (D& R) have plenty more results,
for example D& R describe composition rules which demonstrate that if we have a sequence of
noising mechanisms:

x→M1(x)→M2(M1(x)),

3



and the first mechanism is ε1-DP, while the second is ε2-DP, then the combined mechanism which
releases only M2(M1(x)) is ε1 · ε2-DP, which can be very useful in practice.

We have only tasted some of the definitions and methods involved this area, and in reading
Z&W we also tried to get a better understanding of the meaning of these results in the context of
statistical problems like estimation and hypothesis testing.

Summarizing our discussion of differential privacy:

1. Privacy is a real and important problem (see our discussion of GWAS and genetic information
release)

2. Differential privacy is theoretically elegant but often very conservative. One reason is the
requirement that the guarantees hold for every possible S ⊆ B.

3. The known ε-DP solutions lead to methods that are not practical for important problems like
GWAS. Note however that all we have are sufficient solutions which maintain ε-DP and not
optimal methods in provable senses. Also for problems of low dimension like releasing a single
average or noisy-max, the ε-DP solutions can be acceptable.

4. The basic approach is very “computer-science” oriented, for example it does not assume any
distribution over the population or for the sampling from NX , rather it requires that the results
hold for all possible values, and the only randomness comes from the reporting mechanism
M. Results like those of W&Z add a level by assuming iid sampling from a distribution and
asking how good the results are as statistical estimates of the population quantities.

5. The mathematical thinking behind ε-DP is useful for other statistical applications like mea-
suring and avoiding overfitting in repeatedly using the same data for estimation. We will
discuss this later in the course in the context of dealing with adaptive data analysis.

4


