
Statistics of Big Data, Fall 2021-22

Class notes 11

Review of PCA inference following Boaz’s lecture

Dimensionality reduction: If we agree that estimation in high dimension is a tough problem (for
supervised and even more for unsupervised), then it seems reasonable to search for low dimensional
structure in our data. This is especially relevant if we are willing to assume that such structure
exists and captures most/all the relevant information. This is like the sparsity assumption, now for
unsupervised learning. The linear version of this searches for “interesting directions” in Rp where
most of the spread of the data is. The classical version is Principal Component Analysis (PCA):

v̂1 = arg max
‖v‖=1

Xv

v̂2 = arg max
‖v‖=1,v⊥v̂1

Xv

...

The well known solution is that v̂1 is the eigenvector of XTX with the highest eigenvalue (equiva-
lently the right singular vector of X = UDV T with the highest singular value).

As statisticians we want to go beyond calculating things like the principal components to ask
statistical questions:

1. How are the top PCs and their eigenvalue distributed in different settings?

2. How can we know whether the top PCs capture “real” structure or noise in the data?

3. How do the answers depend on properties of the problem, especially n, p and their ratio?

The main part of Boaz’s lecture discussed the spiked covariance model:

xi =
L∑
j=1

√
λjzijvj + ui , xi, vj , ui ∈ Rp , ui ∼ N(0, σ2I) , zij ∼ N(0, 1) ∀i, j , all independent.

where:

• v1, . . . , vL are the orthonormal “signal” directions in the space

• λj is the strength (variance) of signal j

• ui is the “white” noise that goes in all directions
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• zij is the (relative) signal size for observation i in direction j

In this setting we can write the overall distribution of each observation:

Rp 3 x ∼ N(0, σ2I +
∑
j

λjvjv
T
j ).

Now given a data matrix X of n observations drawn from this model, we calculate its top k
PCA directions and v̂1, . . . , v̂k and corresponding variance explained/eigenvalues λ̂1, . . . , λ̂k, and
ask what is the relationship between the empirical and theoretical quantities, and what kind of
statistical inference can be done, in what settings.

The main specific questions Boaz discussed in this model:

1. In the case L = 0 of no signal, what does the distribution of the eigenvalues look like, and
can we define this as a “null” distribution for testing H0 : L = 0?
The answer, as we saw is the Marchenko-Pastur distribution: For n, p → ∞, p/n → γ, we
have that the distribution of the eigenvalues converges to the M-P distribution with density:

f(l) =
1

2πγl

√
b− l
√
l − a ; l ∈ [a, b] , a = (1−√γ)2 , b = (1 +

√
γ)2.

Note that M-P has a finite support. This does not quite give us a hypothesis test for finite
data (there are more advanced results that allow that), but it gives us a clear understanding
of what to expect under the null. As Boaz showed, even for relatively small data sizes the fit
to M-P is already very good.

2. In the case K > 0, what should be λj so we can find them? What about the corresponding
vj? For this we have the very interesting and concrete phase transition results:

• In the same asymptotic regime as M-P, we can expect to find any signal of magnitude
λj > σ2

√
γ in the sense that the empirical eigenvalue λ̂j will “stick out” of the M-P

distribution, while for signal of magnitude λj < σ2
√
γ with high probability λ̂j will be

within the M-P range so non-identifiable by definition.

• The same bound λ > σ2
√
γ also guarantees that the directions we find will be “related”

to the true directions. This is easiest for L = 1 where the result says that in this case

ˆcor2(v, v̂) ≈
λ2

γσ4 − 1

λ2

γσ4 + λ
σ2

> 0,

which increases to 1 as λ increases, and decreases to 0 as λ↘ σ2
√
γ.

The last part of Boaz’s lecture was devoted to learning PCA’s and estimating covariance ma-
trices with sparsity:

• In the case the vectors vj themselves are sparse, he discussed the method of Johnstone and
Lu (2009) of simply keeping the high-variance directions and calculating PCs in the reduced
space. This provably (under sparsity and other assumptions) allows more efficient learning
of PC’s if the true vectors are sparse.

• For estimating the covariance in the case the true covariance is sparse, he discussed the simple
method of Bickel and Levina (2008) of thresholding the empirical covariance matrix. This
also provably shows that the difficult task of covariance estimation can be (somewhat) solved
under sparsity assumptions.
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The Quality preserving database

Reminder from two weeks ago

Family-wise error rate FWER = P(V > 0) (closely related: E(V ) ) is the probability of
making even one false discovery in the entire corpus. FWER is controlled at level α by the following
simple idea: divide α into K pieces α1, . . . , αK such that

∑
k αk ≤ α, then test H0k at level αk.

Then it is trivial to see
FWER ≤ E(V ) =

∑
k

αk ≤ α.

False Discovery rate (FDR) E(VR ) is the expected proportion of discoveries that are false.
The classical approach to control it is the BH approach.

We discussed publication bias and how it leads to Most published research is wrong.
Solutions we discussed:

• Publishing all results, including negative (then we can correct ourselves for all performed
research)

• Encouraging collaboration and data sharing in a way that makes it beneficial to work together
in a joint data resource that controls FWER (or some other measures) for all research in the
community. Such an idea can use α-spending to control FWER: create an infinite series
α1, α2, . . . such that

∑
j αj ≤ α, and test hypothesis j at level αj .

0.1 The QPD schema (Aharoni et al. 2011), (Rosset et al. 2014)

This is a schema to build and maintain a database for scientific research, assuring:

• Statistical validity of all the results being generated on the database

• Usefulness (=maintaining power) for later users

The main idea is to increase the data size as the database is used. In this way we can maintain
power even if the levels decrease in α spending!

Assume at time t we have data of size nt−1 and remaining α pool of α · qnt−1 for given some
fixed parameter q < 1, say q = 0.999. Then the tth test arrives, meaning a scientist has in mind:

• A pair of hypotheses about some parameter θ:

H0t : θ = θ0 , HAt : θ = θA.

Note this encodes what the test statistic is (through Neyman-Pearson or monotone likelihood),
and also what the effect size they think they will find is through θA.

• A desired power πt

At this point we find ct such that:

αt = α · qnt−1(1− qct),

is an appropriate level for getting power πt for the desired test.
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Then after we perform the test and get ct more samples we have nt = nt−1 + ct samples and
remaining pool of:

α · qnt−1 − α · qnt−1(1− qct) = α · qnt−1+ct .

Hence by definition our pool will never run out.
Example of power calculation with nt samples and required effect size θt, in the simple normal

means case, with known variance σ2:

π(αt) = Pθt
(
X̄ ≥ Z1−αt

σ
√
nt

)
= Pθt

(
X̄ − θt

σ√
nt

≥
Z1−αt

σ√
nt
− θt

σ√
nt

)
=

= 1− Φ

(
Z1−αt

σ√
nt
− θt

σ√
nt

)

Theorem (Aharoni et al. 2011):
For many families of testing problems, including:

1. Any string of simple tests that use Neyman-Pearson

2. Tests of normal means

and many others, the simple recipe above guarantees that ct ≤ c0 is bounded in the following sense:
A test of a specific effect size θ̃ at a specific required power π̃ will never cost more than c0(θ̃, π̃)
samples at any time t.

In practice, this leads to diminishing and not only bounded costs (this can in fact be proven
rigorously based on the same ideas from the original proof).

Important conclusion: If you come later, you will gain power and/or money.
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