
Statistics of Big Data, Fall 2021-22

Class notes 1

What is Big Data?

In the traditional view a statistical modeling or estimation problem has n observations and p
parameters that have to be estimated based on this data, for example:

• Estimating mean based on a random sample from a population: n i.i.d observations, p = 1
parameter

• Linear regression model: n pairs (X1, Y1), . . . , (Xn, Yn) with X ∈ Rp, drawn i.i.d from
Pr(x, y), we assume

E(Y |X) = XTβ + β0.

This model has p+ 1 parameters β ∈ Rp, β0 ∈ R, we can estimate them from the data getting
β̂, β̂0.
Given new observation X we predict it Ŷ (X) = XT β̂ + β̂0.

In more complex modeling situations (such as network modeling we will discuss later in the
semester) it is not always clear what are n and p, but we will try to maintain this view: if n
or p are big we have a big data problem.

Tall vs Wide data and the components of error

Keeping the generic view above, we can think of two types of big data:

• Tall data where n is big and p is small: we have lots of data to estimate a low dimensional
object. These problems can be hard in terms of computation, storage etc., leading to solutions
like Map-Reduce and Spark. However they are usually “statistically easy”, meaning we have
enough information to estimate the models well (in the extreme, we have the entire population
and so “estimation” is simply calculation).

• Wide data where p is big, and n is not huge. Such problems are often very hard statistically,
since we may not have enough information to estimate the model well. This means that in
this setting, in addition to potential computational difficulties, we have to deal with the
statistical difficulties. This is often addressed by dimensionality reduction (reducing p) or
adding regularization (simplifying the problem statistically without explicitly reducing p).
These are topics we will discuss quite extensively.
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The distinction between computational difficulties in big data (which are not the main focus of our
course, though we will touch on some aspects of them) and statistical difficulties (which are our
main focus) will be central to many of the topics we discuss.

Every modeling or estimation problem can be thought of as combining two elements of statistical
difficulty:

• Approximation error: is our approach and model appropriate for the problem at hand? In
the context of linear regression this can be thought of as the question whether the hypothesized
model E(Y |X) = XTβ is in fact correct? If not, how far away is the true mean from being a
linear function? If the true model is far from linear but we insist on fitting a linear model,
we are bound to suffer bias or more generally approximation error in applying our model to
the world, for example for predicting new observations.

• Estimation error: Do we have enough data for estimating the p parameters in our model?
In the linear regression approach, even if we assume the model E(Y |X) = XTβ is correct,
it does not mean that our estimates β̂ will be close to the true β, and this may be because
n is not big and/or because the measurement errors εi = Yi − XT

i β in the data are big.
This inaccuracy due to data finiteness and noise is usually referred to in the context of linear
regression as variance or more generally estimation error.

A very generic view of the behavior of these components in big data problems is:

• In tall data (big n, small p) the estimation error is usually small, while the approximation error
will often be large (unless we are “lucky” in “guessing” a good model with few parameters).

• In wide data the estimation error usually dominates, as the large number of parameters allows
flexible models that can reduce approximation error.

Generic rules of thumb following this discussion:

• In wide / high dimensional problems (big p) — critical to control estimation error, otherwise
no useful models can be built.

• Modern methods in machine learning, predictive modeling, big data modeling aim to combine
flexibility and high dimension (controlling approximation error) with regularization (control-
ling estimation error) in diverse and creative ways.

Big Data in action: Some Google stories

Google is a company whose initial success and rise to prominence (and arguably also its ongoing
dominance) was primarily fueled by solving a big data problem of how to effectively search the
web. Their PageRank algorithm was essentially a new statistical approach to this problem, as we
will discuss. Over the years Google became a producer of huge data and has also carried out many
big data modeling projects on this data, some for internal purposes and others for “public good”.
We will critically review one such project and as time permits also discuss the original PageRank
story.
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Google Flu Trends

In the time when the worst pandemic in public view was the yearly Flu outbreak, the main metric
used to evaluate the Flu situation was the percentage of doctor visits related to Influenza-like
illness or ILI. In usual times it is 1%-2% while during outbreaks it can rise to 10%. The Center
for Disease Control (CDC) traditionally reports weekly ILI in about two weeks delay (the time it
takes to collect and process the information).

Around 2009 Google had the cool idea that their big data on search can be used to estimate
the ILI in real time (or even ahead of time) based on what people search for — for example,
searching for Flu symptoms when self-diagnosing. This can allow obtaining information on Flu
outbreaks earlier and taking the needed steps, so potentially is very important for public health
policy (again, this became clearer during the COVID outbreak, where information is needed to
guide public policy). They applied their approach to create a system called Google Flu Trends
(GFT) and described it in a paper published in 2009 in the journal Nature (one of the two most
important scientific journals).

The specific approach GFT took:

1. Collected CDC information on ILI from 128 weeks between 9/2003 − 3/2007 in 9 regions of
the US, as a training data-set of size 128× 9. 42 additional weeks until 5/2008 were kept as
a test set for final evaluation of their model.

2. They identified the 50 million most common search terms on Google during that period.
There was no processing, so for example “flu cough” is a different term than “cough flu”.
Their actual data is the % of all searches that searched each term in each week (tiny numbers
on order of 1/(5 × 107).). Their training set is thus with n = 128 and p = 5 × 107, a very
wide problem (unclear whether the 9 regions are part of n or p...).

3. On the training data, they ranked the terms according to their “association” with ILI, as
follows:

(a) For each word, they divided the 128 weeks into 4 groups (folds) of 32 each, remember
they also have 9 regions. Denote qij the vector of length 32 of % searches for this word
in fold i = 1, . . . , 4, region j = 1 . . . , 9.

(b) They performed 4-fold cross validation for each region separately:

i. Denote for fold i = 1, . . . , 4, j = 1, . . . , 9:

Yij = logit(ILIij) ∈ R32 Qij = logit(qij) ∈ R32.

Reminder: logit(p) = log(p)
log(1−p) for p ∈ [0, 1].

ii. Assuming the model Y = αQ+ ε perform 4-fold cross-validated linear regression:

Training linear regression model: Y−i,j ≈ α̂ijQ−i,j

Holdout prediction: Ŷi,j = α̂ijQi,j

Evaluation: rij = cor(Yij , Ŷij)

iii. This gives 4× 9 = 36 numbers rij , calculate Fisher’s transformation (why?):

Zij = 0.5 log

(
1 + rij
1− rij

)
,

3

http://www.nature.com/nature/journal/v457/n7232/full/nature07634.html


and the final evaluation of how good this word is for “predicting” current ILI is:

Z̄ =

∑
ij Zij

36
.

(c) Overall this requires estimating 5 × 107 × 36 ≈ 2 × 109 linear regression models and
correlations, but each one is pretty easy to calculate.

(d) This yields a ranked list of search terms: Z̄(1) ≥ Z̄(2) ≥ . . . ≥ Z̄(5×107).

4. Now they define:

X
(K)
j = logit

(
K∑
k=1

q
(k)
j

)
,

the logit of the % of the queries in the top-ranked K out of all words.

5. They seek to find K̂, the best number of terms to include in their model:

(a) For every K fit a single regression model on the 128 × 9 points in the training set:
Y ≈ α̂(K)X(K).

(b) Select K̂ as maximizing the correlation on the 42 × 9 observations on the test set (not
yet used!):

K̂ = arg max
K

cor
(
Ytest, α̂

(k)X
(K)
test

)
.

This leads to K̂ = 45 as shown in Figure 1 of their paper.

6. In Figures 2,3 they demonstrate the prediction success of their model within the evaluation
period (Fig. 2) and in real time prediction (Fig. 3).

The problems with their solution can be divided into several categories:

1. Conceptual and general approach issues, e.g.:

• Is this approach likely to work in the long term? Why or why not?

• Is it properly dealing with the huge dimensionality and the bias-variance issues that
come with it?

• Where are comparisons to simpler standard benchmark approaches?

2. Specific statistical problems related to implementing the approach they chose, e.g.:

• How they perform and cross-validate their univariate models in the first stage?

• How they combine them using Fisher Z scores

• How they evaluate the overall model and choose K̂

In the homework you will deal with the second category first, then consider also the first category.
For this you may find it useful to read and think about the later paper published in 2014 in the
journal Science (the other top scientific journal) and severely criticizing their approach and the
validity of their results.
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The Science paper reports that starting 1/2011 GFT predicted ILI too high in 100 out of 108
weeks, with a peak of two-fold too big (meaning GFT says there’s a major Flu outbreak, while in
fact there is regular Flu season). This paper insults the GFT paper extensively, though in my view
it also suffers from being quite vague and not mathematically concrete. For example it uses the
term “algorithm dynamics” as a major flaw without properly defining what it means. It does point
out a concrete problem in not comparing to standard auto-regression models which they claim
perform just as well. Your task in the second item of the homework is to figure out what they are
trying to say and rephrase it in more accurate and concrete terms.

PageRank

In 1998 Google founders came up with a “new” algorithm for ranking importance of internet pages
that revolutionized search.

Think of the internet as a graph, with directed edges being the links between sites. In this view,
it is clear that important pages are ones that are linked by either other important pages or many
other pages. The PageRank approach can be thought of as considering the internet as a stochastic
process (random walk) where all outgoing links from a site have an equal probability/rate. Typically
it is viewed in discrete time, where at each time point, given the current location with k outgoing
links, we have a probability of (1 − δ)/k of moving to each one, and δ of moving to a randomly
chosen site on the internet. See illustration here.

For a three-node network with outgoing links from 1 to 2 and 3, and from 2 to 3, this gives
transition matrix:

M =

1 2 3

1 δ
3

δ
3

1
3

2 1−δ
2 + δ

3
δ
3

1
3

3 1−δ
2 + δ

3 (1− δ) + δ
3

1
3

The stationary distribution is a probability vector R ∈ ∆3 such that: R = MR, which always
exists since M is a left stochastic matrix. In this low dimension we can easily find it analytically,
for example with δ = 0.1 we get R = (0.19, 0.28, 0.53)t.

On the internet scale it is typical to run an iterative algorithm essentially emulating the Markov
process and approximate R, and this is the ranking the original PageRank used to revolutionize
search...
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