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Steel and Torrie (1960) bring from Erdman (1946): 
6 groups of red clover plants, each inoculated with a 

different strain of Rhizobium bacteria.  

5 measurements of Nitrogen content on each group 
( the standard textbook/manuals example) 

         Yi+ ~ N(µι,σ2/5)             i=1,2,…,6;  

Interest in comparing strain effects 
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• Estimates          Yi+ -Yj+ 

• Test the significance of the difference, with H0: µι = µj  	



	

 via two-sample normal tests or t-tests 

• Can do it by p-values 

            P-value =ProbH0 ( |Z | > |Y(i+) -Y(j+) |/ σdiff)  

            under H0  P-value ~U(0,1).  

• To reject H0 with the probability of type I error  ≤ α 	



(make a discovery with prob. to make a false discovery ≤ α)  

            Reject if P-value ≤ α.	
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• Suppose we select the most promising groups’ difference   
   Y(k+) -Y(1+) 

• With the  such tests, each at level α 

 Prob( Z> |Y(k+) -Y(1+) |/ σdiff ) < α 	



  even if there is no difference.  The larger k the worse it gets! 

•  In fact going back to the original paper we found  13 such 
groups resulting in  pairwise comparisons. With 
the limiting computing power of the 40s a large scale 
inference problem was encountered.  

The multiple comparisons problem (procedures)  MCP  
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Scientists study rumours: 
Eating coloured jelly 
beans causes Acne 

xkcdSignificant.webarchive 
 



 “Unussual secrets are hidden in numbers. for 

instance, an orange car is less likely to have 

serious damages that are discovered only after 

the purchase….” 
 

 

Data mining from KAGGLE website	


THE MARKER IT   2.5.2012  	
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Giovanni and others (95) examined the possible effect of excess 
eating of 130 different kinds of foods on prostate cancer.  

3 kinds of foods cleared the statistical significance bar –  

    these are the only ones reported in the article’s abstract.  
	


Eat ketchup and pizza to prevent prostate cancer	

 
In the article itself all 130 results are reported but the abstract is 

usually the only information that passes on to the public – even 
to the professionals. 

 
    Selection by the abstract phenomenon 
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In the meanwhile the paper was cited over 1000 times. 
Dozens of studies about the contribution of tomatoes to the 
 heeling of different types of cancers with unclear results. 
A recent study, claims the secret is in the Oregano. 	


Selective inference 



Since the danger seems largest when µ1=µ2=…=µk   

• Test first this (single) hypothesis via F-test at level α. 

•  If not significant STOP 

•  If significant continue with t-tests at level α  as before 

Fisher’s protected LSD ( Least Significant Difference) 

But: protection is offered only when µ1=µ2=…=µk 

 Define such protection as the control of the  

          FamilyWise Error-Rate in the weak sense. 

0
PrH making even one type I error( ) ≤α.
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1. The null hypotheses tested: H1,H2,…,Hm. 
  

m0 of the m hypotheses tested are true, 
we do not know which ones are true or even their number  
 
2. The result of any testing procedure is Ri i=1,2,…,m: 
  Ri= 1   if Hi is rejected;   
     = 0   if not  
 Let    Vi = 1  if Ri=1 but Hi is true (a type I error was made) 
      = 0  otherwise 

 
3.    R=ΣRi     # hypotheses rejected; 
     V= ΣVi    # hypotheses rejected in error 

 
So, e.g. 
 
  

weak FWER ≡ Pr
0H V ≥1( ) .

11 



• The FamilyWise Error-Rate 

For any configuration of true and null hypotheses 
  
               FWER =Prob(V ≥ 1) 
 
Thus by assuring FWER ≤ α, the probability of making even 

one type I error in the family, is controlled at level α:  
 
Simultaneous Inference: all inference made are jointly 

correct up to the pre-specified error 
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Estimate m parameters by a confidence interval for each. 

Define  

V = # of intervals failing to cover their respective parameter. 

If for any configuration of parameters 

                   FWER =Prob(V ≥ 1) ≤ α	



the set of such intervals is said to offer  

  Simultaneous Coverage at level 1-α 
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If we test each hypothesis separately at level αBON 
 
       E(V)=E(ΣVi) = Σ E(Vi) ≤ m0 αBON ≤ m αBON 

 
So to assure E(V)≤α we may use  
 
  (Is any condition needed? ) 

This is 
 

that controls any configuration  of hypotheses  
      Expected number of errors  E(V)     ≤ α 
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As the Bonferroni procedure assures   E(V)  ≤ α 
 
This also assures Pr( V ≥ 1 ) ≤ α Because:  
 
E(V) = 0Pr(V=0)+1Pr(V=1)+2Pr(V=2)+…+mPr(V=m) 
        ≥  0          + 1Pr(V=1)+ Pr(V=2)+…+ Pr(V=m) 
        =  0           + Pr(V ≥ 1) 
 
So, when using αBON =α/m for individual tests, or for CIs 
        
  FWER =Prob(V ≥ 1) ≤ E(V) ≤ α 

 
  (again no condition is needed) 
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If the test statistics are independent, 
and we test each hypothesis separately at level αSID 
 
 Prob(V≥1)=1-Prob(V=0) = 1-(1- αSID)m0

 ≤ 1-(1- αSID)m ≤ α 
 
So to assure Prob(V ≥ 1) ≤ α we may use 
 
                  

 
Note: If m0=m equalities 
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: we used dependency structure to get a better test. 
 
How much better?   
  

 αSID =1-(1-α)1/m~1-(1- α/m - α2/2m) = αBON+(α2/2m)(m-1)/m 
 
Even for small m (=10) very little gain: .00511 instead of .005 
 

  for pairwise comparisons:  
 Utilizes dependency by calculating  the distribution of the 
studentized range statistics  ( Y(k+) -Y(1+) )/(s/n1/2), 

   
  same idea but larger gain. 
 
   Known as post-hoc analysis 
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Stepwise procedures that make use of observed p-values: 
  

•  Let Pi be the observed p-value of the test for Hi   

• Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 

•  If P(1) ≤ α/m       Reject H(1)  
•  If P(2) ≤ α/(m-1) Reject H(2)  

      … 
• Until for the first time P(k) > α/(m+1-k)  

• Then stop and reject no more. 
                  
    Always: FWER ≤ α  
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NIH: Phenotyping Mouse Behavior High throughput screening of mutant mice 
 
 
 
 
 
 

Comparing between 8 inbred strains of mice 
At 3 labs: Golani at TAU, Elmer MPRC, Kafkafi NIDA 
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Behavioral Endpoint Mixed 
Prop. Lingering Time 0.0029 
# Progression segments 0.0068 
Median Turn Radius (scaled) 0.0092 
Time away from wall 0.0108 
Distance traveled 0.0144 
Acceleration 0.0146 
# Excursions 0.0178 
Time to half max speed 0.0204 
Max speed wall segments 0.0257 
Median Turn rate 0.0320 
Spatial spread 0.0388 
Lingering mean speed 0.0588 
Homebase occupancy 0.0712 
# stops per excursion 0.1202 
Stop diversity 0.1489 
Length of progression segments 0.5150 
Activity decrease 0.8875 

Significance of 8 Strain differences 

Bonferroni 
.05/17=.0029 

Unadjusted 

20 



 In the search for food affecting Prostate Cancer, 
 
 3 food intakes were reducing with unadjusted significance 
 0     with Bonferroni. 
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If a single null is true and tested at level α  	


on the average,  
the proportion of times a type I errors is made is α.  
So why should we not worry only about the proportion 
 of times a test/CI results in error ?  
This property has is called The Per Comparison Error-Rate 
where for any configuration of hypotheses  
         PCER= E(V/m)=E(V)/m 

Testing at (nominal) level  α  assures per comparison level 
is  α;  amounts to “don’t worry – be happy” approach. 

 
But when we select… 
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3/4  CI do not cover  
 when selected 

These so selected 4  
will tend to fail,  
or shrink back, 
when replicated 
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• The goal for selective inference is modest:  
keep the original property of the individual inference to hold 

         on the average over the selected . 
Selective inference for multiple confidence intervals:  

 average lack of coverage over the selected to be ≤ α. 
 
• The goal for simultaneous inference  is more ambitious: 
The property for individual inference should hold 
simultaneously for all parameters, and therefore 
simultaneously for any selected subset 

simultaneous inference => selective inference  

24 



    (Stein et al.’10) 

• Alzheimer's Disease Neuroimaging Initiative (ADNI) 
study: 2003-2008 

• Goal: determine biological markers of  
Alzheimer’s disease by testing for associations 
between volume changes at voxels with genotype 

YB 25 



YB 

32,000 1 Voxels searched 

1 

448,000 

SNPs 

 	


number of tests ~ 13,000,000,000 
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In these large problems: 
 
• The selected are presented, highlighted, discussed. 

 Their strength is displayed (p-values) 
  The effect estimated 

 
• Those inferences that are not selected are simply ignored: 

 There are so many of them that even their identities   
 are not reported, needless to say further details 
 about the results of the inference for each 

Y Benjamini 27 



Tukey (1978): one should always control the FWER 
 
Tukey et al (‘94,2000): National assessment of 

Educational Progress , comparing 35 States in US 
 
        # of comparisons 35*(35-1)/2 = 595 

 
There was a debate how to report results:  
   with pairwise adjustment or without.  

Their solution 
   
  Use the False Discovery Rate (FDR) approach 
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Simon Center, Berkeley 

1.  Simultaneous and Selective inference 	


2. Testing with FDR control	

 	

	


3.  False Coverage Rate	


4. Estimation and Model Selection 	

 	

 	

 	

	


5.  More complex  families 	
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Y Benjamini 

                                                        Benjamini and Hochberg (89, 95)  

R = # rejected hypotheses =  # discoveries  

V of these may be in error = # false discoveries 

The error (type I) in the entire study is measured by 
 

Q =
V
R

R > 0

= 0 R = 0

i.e. the proportion of false discoveries among the 
discoveries (0 if none found) 

FDR = E(Q) 

Does it make sense? 
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Y Benjamini 

•  Inspecting 100 features: 
2 false ones among 50 discovered - bearable 

2 false ones among 4 discovered - unbearable 

So this error rate is adaptive 

• The same argument holds when inspecting 10,000 

So this error rate is scalable 

•  If nothing is “real” controlling the FDR at level q 
guarantees  

  Prob( V ≥ 1 ) = E( V/R ) = FDR ≤ q  

• But otherwise 

  Prob( V ≥ 1 ) ≥ FDR 

 So there is room for improving detection power 
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Y Benjamini 

• Simultaneous inference: inference should hold jointly for 
all parameters in the family 

• Selective inference: Inference should hold for the selected 
parameters the same way it holds for each parameter 
separately 

 “on the average over the selected” 
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Y Benjamini 

•  Instead of ignoring multiplicity, which still offers ‘control’ on 
the average, 

 
• FDR control assures 

 
• The above is hindsight.  Our original motivation was a 

paper by Soric (’89)  arguing that “most research 
discoveries might be false” when using 0.05 level testing. 

•  (See Ioannidis ’05 famous paper) 

€ 

E(V /numberof tests performed) = E(V /m) ≤α

€ 

E(V /numberof tests selected) = E(V /R) ≤α
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Y Benjamini 

•  Shaffer (1997) brought back forgotten references 
•  Eklund  (unpublished work in Swedish) 
•  Seeger(1968) about Eklund’s:  FWER controlled in weak 

sense, but not in the strong sense 
•  Simes (1986) suggested to extend his global test of the 

single intersection hypothesis to multiple inferences 
•   Hommel (1988) about Simes:FWER not controlled in the 

strong sense 
•   Hochberg (1988) and Hommel (1988) 
  the series is constants are q/(m+1-i) 

•  Sen (1998a) points out to the classical Ballot Theorem  
•  Names:  FDR procedure (SAS); Benjamini-Hochberg (BH); 

Linear Step-up 
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Y Benjamini 

The BH (Linear Step-up )procedure: 
Let Pi be the observed p-value of the test for Hi  

    
•  Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 
•  Let  

•  Reject   
k=max{i:p(i)≤(i /m)q}

€ 

H(1),H(2),...,H(k )

35 



Y Benjamini 

Behavioral Endpoint Mixed Linear StepUp 
Prop. Lingering Time 0.0029 0.0029 =.05(1/17) 
# Progression segments 0.0068 0.0058 =.05(2/17) 
Median Turn Radius (scaled) 0.0092 0.0088 =.05(3/17) 
Time away from wall 0.0108 0.0117 =.05(4/17) 
Distance traveled 0.0144 0.0147 =.05(5/17) 
Acceleration 0.0146 0.0176 =.05(6/17) 
# Excursions 0.0178 0.0205 =.05(7/17) 
Time to half max speed 0.0204 0.0235 =.05(8/17) 
Max speed wall segments 0.0257 ) 
Median Turn rate 0.0320 0.0294 =.05(10/17) 
Spatial spread 0.0388 0.0323 =.05(11/17) 
Lingering mean speed 0.0588 0.0352 =.05(12/17) 
Homebase occupancy 0.0712 0.0382 =.05(13/17) 
# stops per excursion 0.1202 0.0411 =.05(14/17) 
Stop diversity 0.1489 0.0441=.05(15/17) 
Length of progression segments 0.5150 0.0470=.05(16/17) 
Activity decrease 0.8875 0.05    =.05(17/17) 

Significance of 8 Strain  
36 



Y Benjamini 

Quantile Plot of p-values
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Y Benjamini 

            Westfall and Young (‘98), Storey (‘03) 

•  Order the p-values   P(1) ≤ P(2) ≤…≤ P(m) 
•  Let  

       or 
 

•  Define BH adjusted p-values, called q-values 

•  Reject H(i)     

k=max{i:p(i)≤(i /m)q}

k=max{i :mp(i) /i≤q}

(i)
BHp =max{ j≥ i :mp( j) / j}

(i)
BHp ≤q
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Y Benjamini 

If the test statistics are : 
•  Independent                                 

•  independent and continuous        

• Positive dependent     

• General                  

  
 
 
YB&Hochberg (‘95). YB&Yekutieli (‘01) 

FDR ≤ m0

m
q

FDR = m0
m
q

FDR ≤ m0

m
q

  

FDR ≤
m0

m
q (1 +1/ 2 +1/ 3 +… +1/ m)

≈
m0

m
q log(m)
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Y Benjamini 

• Positive Regression Dependency on the subset of 
true null hypotheses : 

•  If the test statistics are X=(X1,X2,…,Xm): 
•  For any increasing set D, and H0i true 
 Prob( X in D | Xi=s ) is increasing in s 

s’ s’’ 

D 

X1 

40 



•  If X is positive dependent in any of the above senses, 
taking co-monotone (all increasing / all decreasing) 
transformations in all coordinates will leave the dependency 
unchanged. 
So: If the test statistics X are PRDS on I0, 
 So are the left-tailed p-values, via F0(Xi) for all i 
 Or             right-tailed p-values, via 1-F0 (Xi)                            
(but not the two-sided) 

Y Benjamini 41 



Y Benjamini 

•  Important cases covered by PRDS 
• Multivariate Normal with positive correlation 
• Absolute Studentized independent normal 
•  (Studentized PRDS distribution, for q<.5) 
• Monotone latent variable X | U=u  ind. and co-

monotone in u          
•  Important cases not covered by theory 

• Absolute (studentized) correlated normals 
• Pairwise comparisons 

• But by practice   
 (i.e. simulations, partial theoretical results) 
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Y Benjamini 

Nevertheless, for the linear step-up procedure, 
Simulation results show that the worst case is when 
all test statistics have correlation 1. Can it be proved? 
 
Under this assumption, the FDR can be analytically 
written, and it is shown that 
 

 FDR ≤ qm0/m(1  (1/j)/2  )≤ q 
 

      Reiner ’07, Rami ‘11  
So still conservative. 
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Y Benjamini Louvain ‘05 

•  If the test statistics are : 
• All Pairwise Comparisons:  xi - xj  i,j=1,2,…k 

 
 

FDR ≤ m0

m
q

  even though correlations between pairs of comparisons  
  are both + and -  

  Based on many simulation studies: 
  including Williams, Jones, & Tukey (‘94,’99);  

         And on theoretical analysis by Yekutieli (‘08) 
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Y Benjamini 

FDR control of the BH.  
•  Independent                                  

•  independent and continuous         

• Positive dependent     

• General   

 

FDR ≤ m0

m
q

FDR = m0
m
q

FDR ≤ m0

m
q

  

FDR ≤
m0

m
q (1 +1/ 2 +1/ 3 +… +1/ m)

≈
m0

m
q log(m)
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• Recall the m0/m (=p0) factor of conservativeness 
• Hence: if m0 is known, the BH procedure  
  with q i/ m(m/m0) = q i/ m0 controls the FDR at q exactly  
    i.e. an “FDR Oracle” 

• The adaptive procedure  
Estimate m0 (or p0) from the p-values  

 
Schweder&Spjotvol (‘86), Hochberg&BY (‘90), BY&Hochberg (‘00) 

Y Benjamini 46 



Quantile Plot of p-values
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Y Benjamini 

m0	
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                          YB and Hochberg (1989,2000) 
• Use BH with q 
   if nothing rejected stop 

• Estimate m0 =(m+1-k) / (1-p(k) ) 
• Then use the Linear Stepup with q* = q m/ m0 
 
 FDR is controlled under independence (simulations) 
 
 Power is greatly increased 

Y Benjamini 48 



 YB, Yekutieli, Krieger( 2006) 
 

Stage I: Use the BH with q/(1+q), rejecting r1; 
  if r1=0 stop 

 
Stage II: Estimate m0 = (m- r1 )(1+q), 

 Then use it again with q*= q  

	


Proven FDR control under independence 	



Y Benjamini 49 



Y Benjamini 

Behavioral Endpoint .05/(1.05)(i/17) p(i) 
.05i/[(1.05)*(17-8)] 

Prop. Lingering Time 0.0028 0.0029 0.0052 

# Progression segments 0. 0056 0.0068 0.0105 

Median Turn Radius (scaled) 0.0084 0.0092 0.0158 

Time away from wall 0.0112 0.0108 0.0211 

Distance traveled 0.0140 0.0144 0.0264 

Acceleration 0.0168 0.0146 0.0317 

# Excursions 0.0196 0.0178 0.0370 

Time to half max speed 0.0224 0.0204 0.0423 

Max speed wall segments 0.0252 0.0257 0.0476 

Median Turn rate 0.0280 0.0320 0.0529 

Spatial spread 0.0308 0.0388 0.0582 

Lingering mean speed 0.0336 0.0588 0.0634 

Homebase occupancy 0.0364 0.0712 0.0687 

# stops per excursion 0.0392 0.1202 0.0740 

Stop diversity 0.0420 0.1489 0.0793 

Length of progression segments 0.0448 0.5150 0.0761 

Activity decrease 0.0476 0.8875 0.0809 S
ig
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fic
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ce

 o
f 8
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s 
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 Storey, Taylor, Siegmund (‘04)  modified Storey (‘03): 
 Pre-determined λ   (say λ=1/2):      

   
 into  m0=(m+1-#(pi ≥ λ)  /  (1-λ ) 
  and added the condition for rejection  pi ≤ λ 
 

•  Proven FDR control under independence  
  asymptotic control for weak dependency 

•  Most powerful under independence  
•  Fails to control FDR for all PRDS 

 (for equally correlated FDR may double) 

Y Benjamini 51 



Y Benjamini 

Behavioral Endpoint p(i) p(i) 0.05 (i/6) 
Prop. Lingering Time 0.0029 0.0029 

# Progression segments 0.0068 0.0068 

Median Turn Radius (scaled) 0.0092 0.0092 

Time away from wall 0.0108 0.0108 

Distance traveled 0.0144 0.0144 

Acceleration 0.0146 0.0146 

# Excursions 0.0178 0.0178 

Time to half max speed 0.0204 0.0204 

Max speed wall segments 0.0257 0.0257 

Median Turn rate 0.0320 0.0320 

Spatial spread 0.0388 0.0388 

Lingering mean speed 0.0588 0.0588 

Homebase occupancy 0.0712 0.0712 0.108 

# stops per excursion 0.1202 0.1202 0.116 

Stop diversity 0.1489 0.1489 0.125 

Length of progression segments 0.5150 0.5150 0.133 

Activity decrease 0.8875 0.8875 0.141 S
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ce
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2= #{Pi ≥ .5} m0=(2+1)/(1-1/2)=6 
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Y Benjamini 

How do the bias and variance of m̂0 a↵ect E(m0/m̂0)?

Taylor expansion:

E(m0/m̂0) = 1� bias/m0 + bias2/m0
2
+ variance/m0

2
.

A surprising result 
If one restricts Storey’s estimator  
to λ=q (= say .05) 
performance under dependency  
improves dramatically 
                               
(Blanchard &Roquain ‘08,‘09) 
 

Two-Stage M-Storey λ=1/2 
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Starting with m0=m+1-1(1-q) -q  Use  m0i = (m+1-i(1-q)) 
Namely 
 
 

Y Benjamini 

Let k = max{i : 8j  i p(j)  qj
m+1�j(1�q)}.

If such a k exists, reject the k associated hypotheses;

otherwise reject no hypothesis.

Gavrilov et al (2010) under independence     
Finner et al (2010) showed its asymptotic optimality in m 

54 



Holm: Starting with p(1), Compare p(i) ≤ α/(m+1-i);  
step to higher p-value reducing the size of the family by 1. 

Stop with first non-rejection.  
Multi-stage: Starting with p(1), compare p(i) to q i/(m+1-i(1-q)); 
 step to higher p-value reducing the size of the family by  1-q. 

Stop with first non-rejection.  
 
 

Y Benjamini 

Let k = max{i : 8j  i p(j)  qj
m+1�j(1�q)}.

If such a k exists, reject the k associated hypotheses;

otherwise reject no hypothesis.
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 The step-down Multiple Stage procedure:  

0 20 40 60 80 100
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Multiple Stage Procedure
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←

€ 

←

 FDR controlling properties by Gavrilov et al (‘10) 
Asymptotic Optimality Shown by Finner et al (‘10) 
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• Started with Tusher et al (2001) in the context of gene 
expression analysis . Thresholding significance at a 

• Storey (2012)     pFDR(a) =E(V(a)/R(a) | R(a) >0) 

    =FDR(a)/Pr(R(a)>0) ~ FDR 

• Efron (’01),… until ‘Large Scale Inference’ Book (‘10) 

            Fdr(a)  =E(V(a))/E(R(a)) ~ FDR ~ pFDR 

    and the local FDR fdr(x) =p0f0(x)/f(x) 

    =p0f0(x)/ (p0f0(x)+p1f1(x)) 

and estimating p0 , f(x) and even f0(x) makes it ‘empirical. 

A well developed methodology addressing same goals. 

Y Benjamini 57 



• The approaches we have described take all hypotheses 
on equal footing 

• Weighted procedures make distinctions, hypothesis Hi 
receives weight ωι ,  Σ ωι =m, reflecting 

•  (a) Its importance                                      YB & Hochberg (‘98) 

 wFDR =E(ΣωιVi ) / (ΣωιRi ) ) 
   it allows to assign monetary to decisions. Or, 
•  (b) The advantage it gets          Genovese & Wasserman (‘06) 

                pi*=pi/ωι       
             FDR defined, and tested, as before 
• Both are underutilized 
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