
Statistics of Big Data, Spring 2018

Homework 2

Due date: 25 April 2018

1. Trying out different sparse modeling approaches

On the class home page you will find links to two n >> p datasets with n = 200 rows and p =
2000 columns each, generated from the same sparse linear model, with only four non-zero coefficients
(+noise). Our goal is to use the data train.csv to build a prediction model with four variables (plus
intercept) and then apply this model to test.csv to examine its performance.

(a) Investigate the correlation structure of the columns of the training data. For example, you can
sample 1000 pairs of columns (k1, k2) and plot their empirical correlation on the y axis and their
distance |k1 − k2| on the x axis. What do you conclude about the correlation structure? Is it
similar to what we discussed in GWAS? Does it comply with compressed sensing assumptions?

(b) Now we want to apply three sparse modeling scenarios to this data:

i. GWAS-like marginal regression: Apply marginal regression to each column, and choose the
best four columns under the constraint that their indexes are at least 70 apart. Then build
a linear regression model with the chosen variables only.

ii. Relaxed Lasso: Generate the LARS-Lasso path, stop when it has four variables, then fit a
linear regression model with those variables.

iii. L0 variable selection: Find the best “simultaneous” subset of four variables to choose. Since
this is practically impossible in 2000 dimensions (at least with current R functions), we will
implement it by running a four-variable-selection procedure on the indexes 1−200, 101−300,
201− 400 etc. (total of 19 models), then run it once again on the union of variables selected
by all models (should be about 50), to obtain a final model. Again, we then build a linear
regression model with these 4 variables only.

Some code examples are given in the file sparse.r, pointed from the class home page.

For each method, present the final model selected, with the variable identities. Also document
and compare the total running time the system took to build it (for example using Sys.time() or
proc.time() in R).

(c) Now apply each of these models to the test data and compare their prediction performance.

(d) How confident are you that you found the correct variables in each approach? Relate this to
compressed sensing assumptions and their validity here.
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2. Which properties of Lasso path generalize to other loss functions?
Recall we showed the optimality conditions for a Lasso solution:
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where as we noted in class,

XT
k (Y −Xβ̂(λ)) = −∂RSS(β)

∂βk
|β=β̂(λ)

is the derivative of the loss function.

We noted in class the following properties of the set of solutions {β̂(λ) : 0 ≤ λ ≤ ∞}:

i All the variables in the solution are “highly correlated” with the current residual from (1) above,
and all the variables with zero coefficients are “less correlated” with the current residual from
(2,3) above.

ii The solution path {β̂(λ) : 0 ≤ λ ≤ ∞} as a function of λ can be described by a collection of
“breakpoints”∞ > λ1 > λ2 > ... > λK > 0 such that the set Ak of active variables with non-zero
coefficients is fixed for all solutions β̂(λ) with λk ≥ λ ≥ λk+1.

iii β̂(λ) is a piecewise linear function, in other words, for λ in this range we have:

β̂(λ) = β̂(λk) + vk(λk − λ),

for a vector vk we explicitly derived in class.

Assume now that we want to build a different type of model with a different convex and infinitely
differentiable loss function, say a logistic regression model for a binary classification task, and add
lasso penalty to that:

β̂(λ) = arg min
β

n∑
i=1

log
{

1 + exp{−yixTi β}
}

+ λ‖β‖1.

We would like to investigate which of the properties above still holds for the solution of this problem.

(a) Using simple arguments about derivatives and sub-derivatives as we used in class for the quadratic
loss case, argue that that three conditions like (1)-(3) can be written for this case too, with the
appropriate derivative replacing the empirical correlation. Derive these expressions explicitly for
the logistic case.

(b) Explain clearly why this implies that properties (i), (ii) still hold (for (ii), you may find the
continuity of the derivative useful).

(c) Does the piecewise linearity still hold? A clear intuitive explanation is sufficient here.
Hint: Consider how we obtained the linearity for squared loss in 4λ in class by decomposing the
correlation vector XT (Y −Xβ) = XTY −XTXβ.

(d) (* Extra credit) Read the paper “Following Curved Regularized Optimization Solution Paths”1,
also pointed from the class home page, and explain briefly how it proposes to generate the set of
solutions to problems like logistic+lasso, and in particular how it takes advantage of the structure
(1)-(3).

1http://papers.nips.cc/paper/2600-following-curved-regularized-optimization-solution-paths.pdf
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