Statistics of Big Data, Spring 2015 Homework 4

Due date: 2 July 2015, by email or in my mailbox

1. Weighted cardinality estimation (from Liran Katzir)

Extend the cardinality estimation scheme we saw in class to a weighted version. In this version when we encounter an element e_i , we also get w_i , and the objective is to estimate $w = \sum_i w_i$ (counting every element only once of course). In case all $w_i = 1$, we get the original cardinality estimation problem.

Derive an explicit formula using m cells of memory as we did in class for the non-weighted case.

Hint: Carefully review the properties of Beta distributions in Section 3.1 of Liran's writeup and try to figure out how to generalize the use of U(0,1) = Beta(1,1) variables in the non-weighted case to our case. Note the property $Beta(\alpha,\beta) = 1 - Beta(\beta,\alpha)$ is a statement about the cumulative probabilities (hence the densities are mirror images around 0.5).

2. Inferring rotations in Cryo-EM (from Yoel Shkolnisky)

Let R_1, \ldots, R_n be unknown 3×3 rotation matrices. Suppose we are given the products $R_i R_j^T$ for $1 \leq i < j \leq n$. Let S be a $3n \times 3n$ matrix whose (i, j) block of size 3×3 is equal to $R_i R_j^T$, $i, j = 1, \ldots, n$.

- (a) As only blocks of S above the diagonal are given, show how to fill the blocks below the diagonal, that is, $R_i R_j^T$ for $1 \le j \le i \le n$.
- (b) Denote the three columns of R_i by

$$R_i = \begin{pmatrix} | & | & | \\ R_i^{(1)} & R_i^{(2)} & R_i^{(3)} \\ | & | & | \end{pmatrix}.$$

Show that the three vectors of length 3n given by

$$v_j = \left(\left(R_1^{(j)} \right)^T, \dots \left(R_n^{(j)} \right)^T \right)^T, j = 1, 2, 3,$$

(that is, the concatenation of the first, second, and third columns of all the R_i s) are eigenvectors of S corresponding to the same eigenvalue. What is the eigenvalue?

- (c) Using the previous result, explain how to recover R_1, \ldots, R_n from S (or more precisely, how to recover R_1O, \ldots, R_nO , where O is an arbitrary orthogonal 3×3 matrix).
- (d) Denote the (i, j) block of size 3×3 of S by B_{ij} . Now, we randomly perturb some of the blocks B_{ij} , and assume that we have n^2 variables w_{ij} , i, j = 1, ..., n, indicating whether B_{ij} was perturbed or not. Namely,

$$w_{ij} = \begin{cases} 1, & B_{ij} = R_i R_j^T \\ 0, & B_{ij} \text{ was perturbed} \end{cases}$$

Now we want to recover R_1, \ldots, R_n from the perturbed S and the information given by w_{ij} . Proposed approach:

- i. Denote by \tilde{S} the matrix whose blocks are $w_{ij}B_{ij}$ (that is, perturbed blocks are zeroed). What is $\tilde{S}v_j$?
- ii. Now, try to rescale the rows of \tilde{S} so that v_j will be an eigenvector of the rescaled version.
- iii. How can you now recover the R_i 's from this matrix?