1. **Detecting signal in noise**

In this exercise we seek to identify some signal hidden in high dimensional noise. The file `covtrain.csv` contains a matrix X of $n = 1000$ observations of dimension $p = 500$. Data were generated from the model Boaz Nadler used in his talk:

$$x \sim N(0_p, \sum_{j=1}^{K} \lambda_j v_j v_j^T + I)$$

with $K << p$ dimension of signal. Note that this also assumes that $v_j \perp v_l$ for $j \neq l$, and that we used $\sigma^2 = 1$ for simplicity.

Our task is to investigate the eigen decomposition of $X^T X/n$ (or PCA of X) to try and find K, the directions, and relate it to the theory and results presented by Boaz.

(a) Plot the empirical distribution of the eigenvalues of $X^T X/n$ and compare it to the null distribution under the Marchenko-Pasteur law. What do you conclude about the likely number of identifiable non-null signals in this data?

(b) Compare the top eigenvalues to the magnitude $(1 + \sqrt{p/n})^2$ expected if signal is below the “phase transition” threshold. Are your conclusions similar?

(c) Now project the matrix X on the 10 top eigenvectors/PCs \hat{v}_j (by multiplying each row by \hat{v}_j), and calculate the norms of these vectors. How are they related to the corresponding eigenvalues? Explain it algebraically.

(d) Next read another independent matrix drawn from the same distribution in `covtest.csv`. Perform the same 10 projections for this matrix and calculate the norms. Explain the results in light of your findings in the previous items.

(e) (* Extra credit) Next, can we infer on the nature of the vectors v_j?

Hint: The structure is relatively simple.

You can use any graphical, intuitive or other method to try and figure it out, but to get credit you then need to find a way to justify your guess in a relevant measurable way.

Some code hints for this problem are in the file `pca.r`.

Statistics of Big Data, Spring 2015

Homework 3

Due date: 31 May 2015
2. Selective inference in action

Our general setup: we are either testing \(m \) hypotheses or building confidence intervals for \(m \) parameters. We may select a subset \(S \in \{1, \ldots, m\} \) of them as “interesting”.

(a) State whether each of these claims is true or false and explain briefly and clearly:

i. Building confidence intervals at the Bonferroni level \(1 - \alpha/m \) guarantees FCR control at level \(\alpha \).

ii. If we choose a set of rejected hypotheses by the BH step-up procedure at level \(\alpha \), obtaining \(R \) rejections, and then build confidence intervals at level \(1 - \alpha \cdot R/m \), then the FCR is also controlled at level \(\alpha \).

iii. The step-down multiple stage procedure for controlling FDR always rejects more hypotheses than the BH step-up procedure.

iv. If we decide to select all \(m \) hypotheses as “interesting”, then selective inference is reduced to inference “on average”, meaning we are controlling the expected percentage of errors of our \(m \) hypotheses.

(b) Consider the Science paper by Zeggini et al. referenced in slides 10-13 of Yoav’s second deck (link to the original paper on the class homepage).

i. Considering the results from the first part of this problem, and the p values in the table on slide 11, explain why the FCR-corrected intervals on slide 13 do not cross below 1.

ii. Assume now that we were to take a different approach, collect all the SNPs that were significant in any of the participating studies (columns of slide 11), and declare all of them “selected”, and then build FCR-corrected CI’s for them at FCR level \(\alpha \), based on the entire meta analysis (like the last columns of the table). What percentage of these intervals do you expect to cross 1? Specifically, do you expect this percentage to be about \(\alpha \), smaller than that, or larger than that? Explain.