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Abstract

We show that a boolean valued function over n variables, where each variable ranges in an arbitrary
probability space, can be tested for the property of depending on only J of them using a number of queries
that depends only polynomially on J and the approximation parameter e: We present several tests that

require a number of queries that is polynomial in J and linear in e�1: We show a non-adaptive test that has
one-sided error, an adaptive version of it that requires fewer queries, and a non-adaptive two-sided version
of the test that requires the least number of queries. We also show a two-sided non-adaptive test that
applies to functions over n boolean variables, and has a more compact analysis.

We then provide a lower bound of *Oð
ffiffiffi
J

p
Þ on the number of queries required for the non-adaptive testing

of the above property; a lower bound of OðlogðJ þ 1ÞÞ for adaptive algorithms naturally follows from this.

In establishing this lower bound we also prove a result about random walks on the group Z
q
2 that may be

interesting in its own right. We show that for some tðqÞ ¼ Õðq2Þ; the distributions of the random walk at
times t and t þ 2 are close to each other, independently of the step distribution of the walk.

We also discuss related questions. In particular, when given in advance a known J-junta function h; we
show how to test a function f for the property of being identical to h up to a permutation of the variables, in

a number of queries that is polynomial in J and e�1:
r 2003 Published by Elsevier Inc.
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1. Introduction

Combinatorial property testing deals with the following task: For a fixed property P and any
given input f; one has to distinguish with high probability between the case where f satisfies P and
the case where f is ‘far’ from satisfying it, accessing the least possible number of bits from the
input.
A property P is said to be e-testable using q queries, or simply ðe; qÞ-testable, if there exists a

probabilistic algorithm that makes at most q queries on any given input f (it is assumed that the
input is accessed using an oracle), such that

* if f satisfies P; then the algorithm accepts it with probability at least 2=3; and
* if f is e-far from P; that is, if it must be changed in more than an e-fraction of the places in order

to make it satisfy P; then the algorithm rejects it with probability at least 2=3:

A testing algorithm is said to be 1-sided if it accepts with probability 1 (rather than 2=3) any
input that satisfies P: A testing algorithm that determines all its queries in advance, and uses the
answers only in deciding whether to accept the input (and not in planning some of the queries) is
called a non-adaptive test.
The general notion of property testing was first formulated by Rubinfeld and Sudan [RS96],

who were motivated mainly by its connection to the study of program checking. The study of this
notion for combinatorial objects, and mainly for graphs, was introduced by Goldreich et al.
[GGR98].
Property testing has recently become a very active research area, see for example the surveys

[Ron01] and [Fis01]. In addition to its theoretical appeal, it emerges in the context of PAC
learning [GGR98], program checking [RS96], probabilistically checkable proofs [AL-
M+98,AS98,RS97], approximation algorithms [GGR98] and more. Properties of boolean
functions were given particular consideration from the point of view of property testing, and
especially properties related to monotonicity [GGL+00,DGL+99,FLN+02]. Perhaps the work
most closely related to ours is [PRS01]. That paper presents testing algorithms that perform
Oð1=eÞ queries for the following properties of boolean functions: Being a singleton function (a
function of a single variable), being a J-monomial (a conjunction of at most J literals), and being
a monotone DNF function with a bounded number of terms.

1.1. Boolean functions and juntas

In this paper we consider properties of boolean functions over n variables, namely functions
over n variables that admit only two values. It will be convenient for us to assume that the values
of boolean functions range in f�1; 1g:
While some of our results consider functions over boolean variables, other results apply to

functions over variables that range in general domains. When the type of the boolean function f

being discussed is known, we denote the range of the ith variable of f by Oi (in the case of boolean
variables, Oi ¼ f0; 1g). Denoting
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Pð½n�Þ ¼def
Yn

i¼1

Oi;

we have that all the boolean functions that we consider here can be written in the form
f :Pð½n�Þ-f�1; 1g; and that any assignment x for such a function is a vector ðx1;y;xnÞ; where
xiAOi for every i: In the following we will also consider a probability measure mi associated with
every Oi; and the corresponding product measure associated with Pð½n�Þ:

Juntas. The main property of boolean functions we focus on is that of depending on only J (or
less) of the variables.

Definition 1 (Juntas, dominating sets). A boolean function f :Pð½n�Þ-f�1; 1g is called a J-junta

if there exists a set JD½n� of size at most J; such that fðxÞ ¼ fðyÞ for every two assignments
x; yAPð½n�Þ that agree on J; namely that satisfy xi ¼ yi for all iAJ: In this case it is said that f is
dominated by J: Somewhat abusing notation, J is also referred to as the junta that dominates f:

1.2. Preview of results

Knowing that a function depends on only a small number of variables can be especially useful
in the context of learning. For various function classes there exist algorithms that are attribute
efficient (cf. [Lit87,BHL95,BL89,UTW97]). That is, they have polynomial dependence on the
number of relevant variables of the function being learned and only logarithmic dependence on
the total number of variables. One should also mention here the work of [MOS02] concerning
computationally efficient learning of such functions when the algorithm is restricted to uniform
samples.
As part of this effort, [GTT99] presented an algorithm that, for any input function f over

boolean variables, uses OðJðlogðJ þ 1Þ=eþ log nÞÞ queries to completely determine a J-junta that

dominates a function f0 which is e-close to f; if such a J-junta exists. In particular, their algorithm
can be used to test for the property of being a J-junta. We show here the existence of a test for
being a J-junta, for functions over arbitrary product spaces, whose number of queries does not
depend on n at all.

Theorem 1 (The main result). For every fixed J the property of being a J-junta is ðe; polyðJÞ=eÞÞ-
testable for any given e:

1.2.1. Almost juntas
Let us review the definition of testable properties, with respect to the property of being a J-

junta. To prove that this property is e-testable, a test is to be shown, that distinguishes between J-
juntas, and functions that must be changed in more than an e-fraction of the places in order for
them to become J-juntas. This is made more formal and somewhat more general using the
following definition of a function that is e-close to being a junta. Instead of just counting the
number of values of f that need to be changed in order to make it a J-junta, giving the same weight
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to the value at every assignment, we allow weighing the assignments using a product probability
measure.

Definition 2 (ðe; JÞ-juntas). Let f :Pð½n�Þ-f�1; 1g be a boolean function, and assume that the
range Oi of every variable of f is equipped with a probability measure mi: This determines a

probability measure m½n� ¼
Qn

i¼1 mi over Pð½n�Þ:
f is said to be an ðe; JÞ-junta if there exists a boolean J-junta g :Pð½n�Þ-f�1; 1g such that for a

random assignment xAPð½n�Þ (chosen according to m½n�),

Pr½fðxÞ ¼ gðxÞ�X1� e:

In terms of the above definition, an ðe; qÞ-test for the property of being a J-junta is given a

product measure m½n� on a domain Pð½n�Þ ¼
Qn

i¼1 Oi (specifically, we assume that the testing

algorithm can for each i; select a random element in Oi according to the distribution mi), and an
oracle access to an input function f :Pð½n�Þ-f�1; 1g: It then uses q queries to distinguish
between the case where the input function is a J-junta, and the case where it is not an ðe; JÞ-junta.
We require that the number of queries made to f is entirely independent of m½n�:
Note that the above definition includes the standard case where f is defined over boolean

variables—one should just take Oi ¼ f0; 1g for every i; and mi to be the uniform measure over Oi:
By supplying a biased measure mi for every i; a J-junta test can, however, use the same number of
queries to distinguish between the case where a given f is a J-junta, and the case where it must be
changed on a set of m½n�-measure more than e in order to become a J-junta. Applying our results

for other probability measures mi; one can test functions over variables that range over non-
boolean domains, even infinite ones.

1.2.2. Junta tests
In order to establish Theorem 1 we describe several testing algorithms. The first algorithm is

non-adaptive, requires OðJ4lnðJ þ 1Þ=eÞ queries, and in addition is 1-sided. We also provide an

adaptive variant of this algorithm that requires only OðJ3ln2ðJ þ 1Þ=eÞ queries. Another
algorithm presented here is a non-adaptive variant of the first algorithm that has a 2-sided error,

but requires only OðJ2ln2ðJ þ 1Þ=eÞ queries. In the case of functions over boolean variables, and
where the product measure m½n� is uniform, we present a non-adaptive testing algorithm with a

compact, algebraically oriented analysis, that makes OðJ4lnðJ þ 1Þ=eÞ queries and has a 2-sided
error.

1.2.3. Lower bound
On the other hand, at least with regards to non-adaptive algorithms, we show that the query

complexity has to be a power of J (the tilde notation in the following is used to hide
polylogarithmic factors), even if the test is restricted to functions over boolean variables with
respect to the uniform measure.
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Theorem 2. For every a40; a non-adaptive ð1
2
� a; qÞ-test for the property of being a J-junta requires

at least qX *Oð
ffiffiffi
J

p
Þ queries, even if restricted to functions over boolean variables equipped with the

uniform measure over their domain.

Recently, Chockler and Gutfreund [CG02] have proven a better OðJÞ lower bound, which holds
for adaptive testing algorithms as well. However, the proof given here may have significance
beyond the lower bound itself, since during its course we prove a result about random walks on

the group Z
q
2 that may be of independent interest. In addition, the proof here also provides a

lower bound for permutation testing (see below) for an explicit interesting function.

1.2.4. Random walks
Given any (finite) group G and a distribution P on G; a random walk on G with step distribution

P starts with the identity element, and at each step t; denoting its current position by Xt; picks a
random element xt of G according to P and goes to Xtþ1 ¼ xtXt: This definition of a random walk
generalizes the more familiar notion of a random walk on a Cayley graph of a group, which is
obtained by setting P to be a uniform distribution on the elements of a generating set for G:
A fundamental result of Markov [Mar06] from 1906 (see also [AD86]) states that this random

walk converges to the uniform distribution on G; unless P is concentrated on a coset. A more
recent question of interest is to estimate the rate of convergence of the random walk to its limit
distribution. It is easy to see that this rate depends on the step distribution P; and therefore all the
results in this direction concentrate on particular families of distributions for which good bounds
can be obtained.
Here we ask a different question: Given a distance parameter d40; when do the distributions of

Xt and Xtþc (for an appropriate constant c) become d-close to each other with respect to the

variation distance? Here we give a bound for the group Z
q
2 (and c ¼ 2), that does not depend on

the step distribution P:
We remark that for any do2; such a bound has a chance to hold only if the order of any

element x of G divides c: Otherwise taking P to be concentrated in x will give a counterexample. In

this sense, the following theorem is optimal, since it turns out that for Z
q
2 we can choose c ¼ 2: It is

tempting to conjecture that for any finite group we may choose c to be the least common multiple
of the orders of the elements (it seems possible that the argument we give for the proof of the
theorem might be extended for a general finite Abelian group; the case of non-Abelian groups
seems to be more challenging).

Theorem 3. Let P be a distribution on Z
q
2; and let X be the random walk on Z

q
2 with step distribution

P: Let Pt be the distribution of X at step t: There is an absolute constant C; such that for every d40;

if tXC
log

1
d

d q2 log2ðq þ 1Þ then jPt � Ptþ2jpd; where jPt � Ptþ2j denotes the variation distance

between the two distributions.
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1.2.5. Testing for being a permutation of a given function

Finally, we consider the question of testing that a function f is identical to a fixed function h up
to a permutation of its variables. We only consider functions over boolean variables here, whose
domains are equipped with the uniform measure. Similar questions were given consideration
already in [PRS01]. Here we construct a test for any function h which is a J-junta that is given in
advance.
Some notation about restrictions and permutations of vectors is needed for the exact

formulation of this result: Suppose that J ¼ fj1;y; jJg is some subset of ½n�; whose elements are

given in ascending order, j1o?ojJ : For every permutation s : ½J�-½J� and every vector x ¼
ðx1;y;xnÞAf0; 1gn; we denote by xjsðJÞ the vector x ¼ ðxjsð1Þ ;y;xjsðJÞ ÞAf0; 1gJ :

Theorem 4. Let g : f0; 1gJ-f�1; 1g be a function. The property, that fðxÞ ¼ gðxjsðJÞÞ for some

JC½n� of size J and some permutation s : ½J�-½J�; is ðe; polyðe; JÞÞ-testable for every e:

1.3. Organization of the paper

We start with Section 2, where we give some preliminaries and notation required for the
subsequent sections, and introduce the notion of the variation of a function f on a set I of
coordinates.
Section 3 presents our first junta test, called the size test. It randomly partitions the coordinates

of the input function f; and applies a simple test to each subset in the partition, to discover
whether f depends on any of its coordinates. The size test is non-adaptive, and has a 1-sided error.
In Section 4, we present two variants of the size test, which achieve better query complexity. One
of these variants has a 1-sided error but is adaptive, and the other is non-adaptive but has a 2-
sided error. In Section 5 we present another junta test, that is restricted to functions defined over
the discrete cube with the uniform distribution. This test is 2-sided, and its query complexity does
not match that of the first 2-sided test. However, its algebraic approach yields a nice and compact
analysis.
We then provide the lower bound for non-adaptive junta testing in Section 6, deriving it from

the result concerning random walks in Z
q
2 that is also proven there. In Section 7 we show how to

test a function f for the property of being identical to a permutation of a given function h: We end
the presentation with Section 8, which contains a discussion of some possible directions for future
research, and some open problems.

2. Preliminaries

First, let us define some notation that will simplify the following exposition.

Partial assignments. Suppose that f :Pð½n�Þ-f�1; 1g is a boolean function, where Pð½n�Þ ¼Qn
i¼1 Oi; and each set Oi is equipped with a probability measure mi: Each element xAPð½n�Þ is thus

an assignment to the variables of f; where the ith coordinate of x determines the value of the ith
variable. To specify assignments for only some of the variables of f; we define for each set ID½n� of
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coordinates,

PðIÞ ¼def
Y
iAI

Oi

and equip it with the probability measure mI ¼
def Q

iAI mi: An element wAPðIÞ is thus a partial

assignment for the variables of f: Whenever an element wAPðIÞ is chosen randomly, it is chosen
with respect to mI unless stated otherwise.

Assignment manipulation. If wAPðIÞ and zAPðHÞ are two partial assignments, and I and H are
disjoint, let w0zAPðI,HÞ denote the partial assignment whose ith coordinate is wi if iAI ; and zi

if iAH: For a set ID½n� of coordinates and an assignment xAPð½n�Þ; it is possible to obtain a
partial assignment by restricting x to the coordinates of I ; obtaining xjIAPðIÞ: For simplicity we
somewhat abuse notation, writing x-I instead of xjI : Similarly, we let x\IAPð½n�\IÞ denote the
partial assignment obtained from x by taking the coordinates from ½n�\I :

2.1. Probability, some notation and lemmas

We use E andV to denote expectation and variance respectively. Specifically, suppose that g is a
function of the form g :Pð½n�Þ-R: For a fixed partial assignment wAPð½n�\IÞ; we denote by

EzAPðIÞ½gðw0zÞ�
the expectation of the value of gðw0zÞ; where z is randomly drawn according to mI : Whenever the
context is clear we may also use the shorthand Ez½gðw0zÞ�: Similarly, we denote the variance of
fðw0zÞ where w is fixed and z is distributed according to mI ; by

VzAPðIÞ½gðw0zÞ� ¼ Ez½ðgðw0zÞÞ2� � ðEz½gðw0zÞ�Þ2

¼ Ez½ðgðw0zÞ � Ez½gðw0zÞ�Þ2�:
The following lemma immediately follows from the law of conditional variance (the lemma is

also not hard to prove directly).

Lemma 2.1 (Conditional variance). For every g :Pð½n�Þ-R; two disjoint sets I1C½n� and I2C½n�;
and wAPð½n�\ðI1,I2ÞÞ;

Vz1APðI1Þ;z2APðI2Þ½gðw0z10z2Þ� ¼ Ez1 ½Vz2 ½gðw0z10z2Þ�� þVz1 ½Ez2 ½gðw0z10z2Þ��:

Another lemma that will be important to our arguments is the following inequality relation
between expectation and variance.

Lemma 2.2. For every g :Pð½n�Þ-R; two disjoint sets I1C½n� and I2C½n�; and wAPð½n�\ðI1,I2ÞÞ;
Vz1 ½Ez2 ½gðw0z10z2Þ��pEz2 ½Vz1 ½gðw0z10z2Þ��:
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Proof. The proof follows directly from the definitions, together with one application of the

Cauchy-Schwarz inequality, which implies that ðEz½hðw0zÞ�Þ2pEz½ðhðw0zÞÞ2� for every
wAPð½n�\IÞ and h :Pð½n�Þ-R:

Vz1 ½Ez2 ½gðw0z10z2Þ�� ¼ Ez1 ½ðEz2 ½gðw0z10z2Þ� � Ez1;z2 ½gðw0z10z2Þ�Þ2�
¼ Ez1 ½ðEz2 ½gðw0z10z2Þ � Ez1 ½gðw0z10z2Þ��Þ2�
p Ez1;z2 ½ðgðw0z10z2Þ � Ez1 ½gðw0z10z2Þ�Þ2�
¼ Ez2 ½Vz1 ½gðw0z10z2Þ��: &

2.2. Variation

We now turn to define a measure called variation, of the dependency of a function f on a given
subset of its coordinates (variables). Although we are mostly interested in boolean functions, we
define the variation for all real valued functions.

Definition 3 (variation). Let f :Pð½n�Þ-R be a real valued function, and fix a subset ID½n� of
coordinates. The variation of f on I is defined to be the expectation of the variance of the
restrictions of the form fðw0�Þ; where wAPð½n�\IÞ: That is, we define

VrfðIÞ ¼def EwAPð½n�\IÞ½VzAPðIÞ½fðw0zÞ��

In the case of boolean valued functions, we have an alternative definition for the variation. The
variation of f on a set I is proportional to the probability that f yields different values, when
evaluated on two random assignments which differ only on coordinates from I :

Proposition 2.3. Let f :Pð½n�Þ-f�1; 1g be a boolean function, and fix a set ID½n� of coordinates.
Let wAPð½n�\IÞ and let z1; z2APðIÞ be chosen independently at random. Then

VrfðIÞ ¼def 2 Pr½fðw0z1Þafðw0z2Þ�

Proof. It is easy to observe that for two identically distributed independent random variables
X ;Y ; taking values in f�1; 1g; it holds that VðXÞ ¼ 2Pr½XaY �; and hence

VrfðIÞ ¼ Ew½Vz1 ½fðw0z1Þ�� ¼ Ew½2 Prz1;z2 ½fðw0z1Þafðw0z2Þ��
¼ 2 Pr½fðw0z1Þafðw0z2Þ�: &

The next proposition shows that the variation is monotone and sub-additive. We also note that
for functions defined over the discrete cube with the uniform measure, the monotonicity and sub-
additivity of the variation follow directly from the Fourier-analytic formula for the variation in
Proposition 2.6 below.
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Proposition 2.4 (Monotonicity and sub-additivity). Let f :Pð½n�Þ-R; and let A and B be subsets
of ½n�: Then

VrfðBÞpVrfðA,BÞpVrfðAÞ þ VrfðBÞ:

Proof. Both cases are consequences of Lemma 2.1. We begin by proving the monotonicity of the
variation. To make the formal argument, we let w be a random element in Pð½n�\ðA,BÞÞ; let z1
and z2 be independent random elements in PðAÞ and PðB\AÞ respectively, and let y ¼ z10z2 be
the resulting random element in PðA,BÞ: Then

VrfðA,BÞ ¼ Ew½Vy½fðw0yÞ�� ¼ Ew½Ez1 ½Vz2 ½fðw0z10z2Þ�� þVz1 ½Ez2 ½fðw0z10z2Þ���
XEw½Ez1 ½Vz2 ½fðw0z10z2Þ��� ¼ Ew;z1 ½Vz2 ½fðw0z10z2Þ�� ¼ VrfðBÞ

and we have the monotonicity property.
Having proven the monotonicity, we may assume in proving the sub-additivity property that

the sets A and B are disjoint. Using the notation above, we now prove the sub-additivity with the
aid of Lemma 2.2.

VrfðA,BÞ ¼ Ew½Vy½fðw0yÞ�� ¼ Ew½Ez1 ½Vz2 ½fðw0z10z2Þ�� þVz1 ½Ez2 ½fðw0z10z2Þ���
pEw½Ez1 ½Vz2 ½fðw0z10z2Þ�� þ Ez2 ½Vz1 ½fðw0z10z2Þ���
¼ Ew;z2 ½Vz1 ½fðw0z10z2Þ�� þ Ew;z1 ½Vz2 ½fðw0z10z2Þ�� ¼ VrfðAÞ þ VrfðBÞ

as required. &

We close this section with a lemma that generalizes the sub-additivity of the variation, and plays
a crucial role in the proof of Theorem 1.

Lemma 2.5 (Diminishing marginal variation). Let f :Pð½n�Þ-R be a real valued function, and let

A;B;C be disjoint subsets of ½n�: Then

VrfðA,BÞ � VrfðBÞXVrfðA,B,CÞ � VrfðB,CÞ:

Proof. In the following we let w be a random member ofPð½n�\ðA,B,CÞÞ; and x; y; z be random
members of PðAÞ;PðBÞ;PðCÞ respectively, all independent. We first note from the definitions
and a direct use of Lemma 2.1 that

VrfðA,BÞ � VrfðBÞ ¼ Ew;z½Vx;y½fðw0x0y0zÞ�� � Ew;x;z½Vy½fðw0x0y0zÞ��
¼ Ew;z½Vx½Ey½fðw0x0y0zÞ���;

and similarly

VrfðA,B,CÞ � VrfðB,CÞ ¼ Ew½Vx½Ey;z½fðw0x0y0zÞ���:
A direct application of Lemma 2.2, over gðw0x0zÞ ¼ Ey½fðw0x0y0zÞ�; shows that
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Ew½Vx½Ey;z½fðw0x0y0zÞ���pEw;z½Vx½Ey½fðw0x0y0zÞ���;

concluding the proof. &

2.3. Norms, distances, and inner products

Although our main concern here is the set of boolean functions over Pð½n�Þ; it is useful to
consider such functions as elements in the space of real-valued functions f :Pð½n�Þ-R: For such a
function f; and any parameter 1pqoN; the normalized cq-norm of f is defined by

jjfjjq ¼
def ðExAPð½n�Þ½jfðxÞjq�Þ1=q

(x is randomly chosen in Pð½n�Þ according to m½n�). An inner product between two functions

f; g :Pð½n�Þ-R; is defined by

/f; gS ¼def ExAPð½n�Þ½fðxÞgðxÞ�:

This inner product is related to the c2 norm, satisfying /f; fS ¼ jjfjj22 for every real-valued function

f:
We also define another norm, that is used in Section 6 to measure the distance between two

probability measures P;Q : f0; 1gn-R over the discrete cube. The variation distance between two

such measures is defined by jP � Qj ¼def 1
2

P
xAf0;1gn jPðxÞ � QðxÞj (this is not related to the notion

of variation discussed above).

2.4. Harmonic analysis

Let us now focus on functions defined over the discrete cube f0; 1gn; equipped with the uniform
measure. Real-valued functions defined over this domain can be expressed by their Fourier
expansion as follows.

Definition 4 (Characters and weights). Let SD½n�: The character wS is the function over f0; 1gn

defined by wSðxÞ ¼
defð�1Þjx-Sj (in other words, wSðxÞ ¼ �1 if the number of 1’s in /xijiASS is odd,

and wSðxÞ ¼ 1 if it is even).

Given a function f : f0; 1gn-R; its expansion as a linear combination of characters

fðxÞ ¼
X

SD½n�

#fðSÞwSðxÞ

is called the Fourier expansion of f (such an expansion always exists and is unique, since the set of

characters forms a linear basis for the set of real functions over f0; 1gn).

Properties of characters. The set of all characters forms an orthonormal basis for the space of

real-valued functions over f0; 1gn; with respect to the inner product defined above. In addition,
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every character wS satisfies wSðx"yÞ ¼ wSðxÞwSðyÞ for every x; yAf0; 1gn; where ‘x"y’ denotes
the coordinate-wise addition of x and y in Zn

2:
Variation and Fourier expansion. The variation of a function f; defined over the discrete cube,

can be written in terms of its Fourier expansion as follows.

Proposition 2.6. Let f : f0; 1gn-f�1; 1g be a Boolean function, where f0; 1gn
is equipped with the

uniform measure, and let ID½n� be a set of coordinates. Then

VrfðIÞ ¼
X

S-Ia|

#f2ðSÞ

The proof of Proposition 2.6 is straightforward, and we omit it. Note, however, that this
directly implies Proposition 2.4 and Lemma 2.5 for functions over the discrete cube (with the
uniform measure).

Convolution. The convolution of two functions (or distributions) f; g : f0; 1gn-R is denoted by

f � g; and is defined by ðf � gÞðyÞ ¼def
P

xAf0;1gnðfðxÞ � gðx"yÞÞ: We will need the following

important property of convolution:dðf � gÞðf � gÞðSÞ ¼ 2n � #fðSÞ � #gðSÞ:

3. The size test

The size test, described here, is a one-sided non-adaptive ðe;YðJ4 lnðJ þ 1Þ=eÞÞ-test for the
property of being a J-junta. The independence test, presented next, is its main component. Given
a set I of coordinates, the independence test is used to determine whether a given boolean function
f is independent of the coordinates in I : It is a simple two-query test as follows.

The independence test. Choose a random wAPð½n�\IÞ; and choose z1; z2APðIÞ randomly and
independently. Verify that fðw0z1Þ ¼ fðw0z2Þ:

Properties of the independence test. It is obvious that the independence test always accepts if f is
independent of the coordinates in I ; and by Proposition 2.3 its rejection probability equals
1
2 VrfðIÞ:
If f is a J-junta, then it clearly has the following property: for every partition I1;y; Ir of the set

of coordinates, all but at most J of them have zero variation. Hence the independence test when
applied to f must accept all but at most J of the subsets. This consideration motivates the
following size test.

The size test. The test has two parameters, r and h; that are to be chosen later. The test first
chooses a random partition I1;y; Ir of the set ½n� of coordinates, by choosing for every iA½n�
independently and uniformly the set Ij to which it belongs. It then identifies on which of the Ij’s f

has a non-negligible variation, using 2rh queries, by going over every j from 1 to r and applying h
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iterations of the independence test to Ij: If f is found to be dependent on more than J subsets, the

test rejects, and otherwise it accepts.
Properties of the test. The size test obviously accepts every J-junta, thus having perfect

completeness. We show in the next subsection that, for a proper setting of the parameters r and h;
the size test rejects f with probability at least 1=2 if it is not an ðe; JÞ-junta (since the test is 1-sided
this can easily be amplified to 2=3). Before we prove this, let us set the parameters r and h:

The parameters of the test. We set r ¼def 16J2 and h ¼def 4erðlnðJ þ 1Þ þ 2Þ=e ¼ YðJ2lnðJ þ 1Þ=eÞ:
Hence overall the test makes 2rh ¼ YðJ4lnðJ þ 1Þ=eÞ queries to f; as required.

3.1. Soundness of the size test

Assuming that f passes the test with probability 1=2; we prove that f must be an ðe; JÞ-junta in
two steps. We first take J to be the set of coordinates on which f has variation larger than some
threshold t; and prove that jJjpJ: We then show that the total variation of f on coordinates
outside J is bounded by 2e: This implies, by a simple argument, that f is e-close to a junta
dominated by J:

Let t ¼def 2ðlnðJþ1Þþ2Þ
h

¼ e
2er
; and let J denote the set of all coordinates i for which VrfðfigÞ4t: We

also denote J ¼def½n�\J:

Proposition 3.1. If the size test succeeds on f with probability 1=2; then jJjpJ:

Proof. The key observation here is that if a set I of coordinates contains a member of J; then the
variation of f on that set is at least t (by Proposition 2.4), and therefore each iteration of the
independence test on I detects this dependence with probability at least t=2:

Suppose, for the sake of contradiction, that jJj4J: Since r ¼ 16J2; it is easy to verify that with
probability at least 3=4 the number of subsets in the partition I1;y; Ir that contain an element
fromJ is at least J þ 1:When this occurs, the probability that any of the first J þ 1 subsets which

intersect J will not be identified by the size test is bounded by ðJ þ 1Þð1� t=2ÞhpðJ þ
1Þe�lnðJþ1Þ�2o1=4; since h ¼ 2ð2þ lnðJ þ 1ÞÞ=t: Overall we have that with probability at least 1=2
the size test rejects. &

Having shown that jJjpJ; the proof of soundness will be completed by showing that f is e-close
to a junta dominated by J: We actually show that VrfðJÞo2e: This is sufficient to complete the
proof, according to the following proposition.

Proposition 3.2. Let J be a set of coordinates satisfying VrfðJÞo2e: Then there exists a boolean
function h; that depends only on coordinates from J; and agrees with f on a set of assignments of

measure at least ð1� eÞ:
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Proof. We define the function h :Pð½n�Þ-f�1; 1g by

hðxÞ ¼def signðE
zAPðJÞ½fððx-JÞ0zÞ�Þ

where we arbitrarily set signð0Þ ¼def 1:
It is easy to observe that h only depends on coordinates from J: To show that f and h are equal

for most assignments, we take x to be a random element in Pð½n�Þ; y to be random in PðJÞ; z to

be random in PðJÞ; and we assume that they are all independent. Then

2 Prx½fðxÞ ¼ hðxÞ� � 1 ¼ Ex½fðxÞhðxÞ� ¼ Ey½Ez½fðy0zÞhðy0zÞ��
¼ Ey½Ez½fðy0zÞ� signðEz½fðy0zÞ�Þ�
¼ Ey½jEz½fðy0zÞ�j�XEy½ðEz½fðy0zÞ�Þ2�
¼ Ey½1�Vz½ fðy0zÞ�� ¼ 1� VrfðJÞ41� 2e:

This immediately implies

Prx½fðxÞ ¼ hðxÞ�X1� e;

which completes the proof. &

3.1.1. Bounding VrfðJÞ
It is left to show that VrfðJÞo2e: Assume otherwise, and let us prove that the test rejects with

probability at least 1=2:

Idea of the proof. The sum
Pr

j¼1 VrfðIj\JÞ is never less than VrfðJÞ; as follows from the sub-

additivity of the variation (see Proposition 2.4). Since we assume that VrfðJÞX2e; we haveXr

j¼1

E½VrfðIj\JÞ� ¼ E
Xr

j¼1

VrfðIj\JÞ
" #

X2e

where the expectation is taken over the random choice of the partition. Using the fact that the
(unconditioned on other sets) distribution of any set in the partition is equal to that of any other,
it follows that for any fixed j;

E½VrfðIj\JÞ�X2e=r

Since Ij is a random set of coordinates, we can obtain a concentration property for its variation,

using the fact that every coordinate can contribute at most t to the variation of Ij\J: In fact, we

show that VrfðIj\JÞ (and therefore VrfðIjÞ) is with high probability at least a sizable portion of the

bound for its expectation. This implies that with high probability, there are many sets Ij in the

partition whose variation is relatively high. Since such sets are detected with high probability by
the independence test, the size test rejects f with high probability.

Definition 5. A set Ij in the partition is said to be detectable if VrfðIjÞX e
er
:

Lemma 3.3. Fix j; 1pjpr: The probability that Ij is detectable, over the choice of the partition

I1;y; Ir; is at least 3=4:
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Before we prove Lemma 3.3, we show how it completes the proof of the soundness of the size
test. Let q denote the probability that the number of detectable subsets in the partition is smaller
than r=4: Since the number of detectable subsets is bounded by r; Lemma 3.3 implies that

1

4
rq þ rð1� qÞXE½number of detectable Ij’s�X

3

4
r

from which we have qp1=3: Hence with probability at least 2=3; there are at least r=4 ¼
4J24J þ 1 subsets in the partition, whose variation is larger than e=er ¼ 2t: The size test fails in
this case with probability at least 15=16; as follows from an argument similar to that in the proof
of Proposition 3.1. Therefore, the size test rejects f with an overall probability at least 1=2; as
required.
It is only left to prove Lemma 3.3. The proof requires extending our tools concerning the

variation of a function, and occupies the remainder of this section.

Proof of Lemma 3.3. As mentioned above, the expectation of the variation of f on Ij\J is at least

2e=r: Lemma 3.3 will follow by showing that with probability at least 3=4; VrfðIj\JÞXe=er:
Ij is a random subset, obtained by going over the coordinates iA½n� and taking each of them into

Ij independently with probability 1=r: We can thus view the random variable VrfðIj\JÞ as the sum
of the gradual donation of every coordinate,

VrfðIj\JÞ ¼
Xn

i¼1

ðVrfð½i�-ðIj\JÞÞ � Vrfð½i � 1�-ðIj\JÞÞÞ

In order to use standard deviation bounds for VrfðIj\JÞ; we would like the summands on the

right-hand side to be independent and bounded by a small number. Note that the ith summand is
zero if iAJ; and if ieJ then it is bounded by t; as follows from the sub-additivity of the variation
(and of course, all the summands are non-negative). The summands are thus indeed bounded by a
small number, but they are not independent. This is tackled by introducing a technical tool that we
call the unique-variation. While related to the variation, the unique-variation of Ij can be written

as the sum of independent non-negative bounded random variables.

Definition 6 (Unique-variation). Define the unique-variation (with respect to J) of every
coordinate iA½n� by

UrfðiÞ ¼def Vrfð½i�\JÞ � Vrf½i � 1�\JÞ;

where ½0� denotes the empty set. Now for every set IDPð½n�Þ define its unique-variation by

UrfðIÞ ¼def
X
iAI

UrfðiÞ

The following lemma shows that the unique-variation of a subset I bounds the variation of I

from below.

Lemma 3.4. For every set ID½n� of coordinates, UrfðIÞpVrfðI\JÞ:
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Proof. In fact we show that the unique-variation of ID½n� is bounded from above by VrfðI\JÞ:
For every iA½n� and ID½n�; it follows from Lemma 2.5 that

Vrfð½i�\JÞ � Vrfð½i � 1�\JÞpVrfð½i�-IÞ\JÞ � Vrfðð½i � 1�-IÞ\JÞ;
by substituting A ¼ fig\ðI,JÞ; B ¼ ð½i � 1�-IÞ\J and C ¼ ½i � 1�\ðI,JÞ in its formulation.
From this it follows that

UrfðIÞ ¼
X
iAI

UrfðiÞ ¼
X
iAI

ðVrfð½i�\JÞ � Vrfð½i � 1�\JÞÞ

p
X
iAI

ðVrfðð½i�-IÞ\JÞ � Vrfðð½i � 1�-IÞ\JÞÞ

¼
Xn

i¼1

ðVrfðð½i�-IÞ\JÞ � Vrfðð½i � 1�-IÞ\JÞÞ ¼ VrfðI\JÞ;

concluding the proof. &

By the above lemma, it remains to show that Pr½UrfðIjÞpe=er�o1=4 in order to complete the

proof of Lemma 3.3.
Note that the unique-variation of the coordinates in J is zero, and that UrfðiÞpVrfðiÞpt for

coordinates i outside J; as follows from the sub-additivity property of the variation. The unique-
variation of Ij is therefore a sum of independent non-negative random variables, each of which is

bounded by t; and its expectation is given by

E½UrfðIjÞ� ¼
1

r

X
iA½n�

UrfðiÞ ¼ VrfðJÞ=rX2e=r:

We can therefore apply standard deviation bounds to it, such as the following Chernoff-like
bound, proven in Appendix A.

Proposition 3.5. Let X ¼
Pl

i¼1 Xi be a sum of non-negative independent random variables Xi; and

denote the expectation of X by a: If every Xi is bounded above by t; then

Pr½XoZa�oexp
a
et
ðZe � 1Þ

� �
for every Z40:

Since E½UrfðIjÞ�X2e=r; Proposition 3.5 yields

Pr½UrfðIjÞoe=er�oexp � e
ert

� �
¼ e�2o1=4;

thus completing the proof of Lemma 3.3. &

4. Improving the query complexity

In this section we present two tests for the property of being a J-junta, that obtain an improved
query complexity relative to that of the size test presented in Section 3. The first test uses a simple
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adaptive search method in order to reduce the query complexity. The second test checks possibly
overlapping groupings of the coordinates for independence; it is two-sided, namely it may also
reject a J-junta with some small but positive probability.

4.1. Improving the query complexity using adaptivity

The size test applies several iterations of the independence test to every subset in the partition,
in order to detect whether it has a non-negligible variation. Here we show how, using an adaptive
search, it is possible to detect all the subsets in the partition that have non-negligible variation
using fewer queries, reducing a factor of J in the query complexity.

Theorem 5. Set r ¼ 16J2 (as in the size test). Then there exists an adaptive one-sided J-junta test,
that uses

32erJð1þ log2rÞlnð32Jð1þ log2rÞÞ
e

¼ YðJ3ln2ðJ þ 1Þ=eÞ

queries.

Proof. The idea of the adaptive test is to speed up the finding of the subsets of the partition with
non-negligible variation as follows: Instead of applying the independence test to each subset
individually, we apply it to blocks, each of which is a union of several such subsets. If f is not
found to depend on a block, then all of its elements are declared to be ‘variation free’ at once.
When f is found to depend on a block, the algorithm divides the block into two equally sized sub-
blocks, for which the process is repeated.

Definition 7 (Blocks). Fix a partition I1;y; Ir of the coordinates. A set B of coordinates is called
a block, if it is the union of a positive number of subsets in the partition. The size of the block is
the number of subsets in the partition that take part in this union.

The adaptive test. The adaptive test begins by randomly partitioning the coordinates into
subsets I1;y; Ir: The test maintains, throughout its operation, a set S ¼ fB1;y;Blg of at most J

disjoint blocks with respect to this partition. The blocks in S supposedly contain all the sets Ij in

the partition that have non-negligible variation. Initially S is set to have only one block which
contains all coordinates, namely S ¼ f½n�g: At each step, the test performs the following:

* If all the blocks in S are of size one, accept (in this case at most J elements of the partition
supposedly have non-negligible variation).

* Otherwise, choose a block BAS whose size is maximal. Remove B from S; and partition it
arbitrarily into two sub-blocks B ¼ B0,B00; whose sizes differ by at most 1 (remember that the
size of a block is the number of sets Ij that are contained in it).

* Apply
4er lnð32Jð1þlog2rÞÞ

e iterations of the independence test to B0: If f is found to depend on B0;

then insert B0 into S; and otherwise discard it. Apply the same treatment to B00:
* If the size of S is now greater than J; reject (f depends on each of the subsets in S; so it cannot

be a J-junta in this case). Otherwise continue to the next step.
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The adaptive test obviously accepts with probability 1 if f is a J-junta. To bound the number of
rounds, we note that if after round T the maximum size of the blocks is m; then clearly after round
T þ J the maximum size of the blocks is no more than Jm

2
n: This implies that the algorithm

terminates after at most 2Jð1þ log2rÞ steps, and that each step uses 16er lnð32Jð1þlog2rÞÞ
e queries. The

total number of queries made is therefore as required.
To prove Theorem 5, it is left to show that if f passes the test with probability at least 1=2; then

it is an ðe; JÞ-junta.

Proposition 4.1 (Soundness). If f passes the adaptive-test with probability 1=2; then it is an ðe; JÞ-
junta.

Proof. Let t ¼ e
2er

and let J be defined as the set of coordinates i for which VrfðfigÞ4t (as in

Subsection 3.1). It suffices to prove that jJjpJ and that VrfðJÞp2e: Assume on the contrary that
this is not the case, and let us prove that the adaptive-test rejects with probability at least 1=2:
According to the proof of Proposition 3.1, if jJj4J then with probability at least 3=4 there are

at least J þ 1 subsets in the partition I1;y; Ir whose variation is at least t: Moreover, it is shown

in Section 3.1 that if VrfðJÞ42e; then with probability at least 2=3 there are at least J þ 1 subsets
in the partition, whose variation is at least e=er ¼ 2t: In both cases, with probability at least 2=3
there are at least J þ 1 subsets in the partition whose variation is at least t:
To complete the proof we show that if there are at least J þ 1 subsets with variation at least t in

the partition I1;y; Ir chosen by the adaptive test, then the probability that it accepts is at most
1=8: This holds since in order to accept, the test must at some point discard a block whose
variation is at least t: The probability of discarding each such block is at most

1� t

2

� �4er lnð32Jð1þlog2rÞÞ
e

pe�lnð32Jð1þlog2rÞÞ ¼ 1

32Jð1þ log2rÞ
The test encounters two blocks at each step, so summing over all steps bounds the probability that
such a block is discarded throughout the test by 1=8: &

This concludes the proof of Theorem 5. &

4.2. Improving the query complexity using two-sidedness

In this subsection we present a test with a significantly reduced query complexity. It makes

YðJ2ln2ðJ þ 1Þ=eÞ queries, reducing a J2 factor in the query complexity of the size test. The test is
two-sided, namely we allow it to reject a J-junta with probability at most 1=3; on the condition
that it rejects any input that is not an ðe; JÞ-junta with probability at least 2=3:
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Theorem 6. Let e40 be any positive number, and fix r ¼def 16J2; s ¼def 20Jð3þ ln rÞ; and

h ¼def 6erð3þ2 ln sÞ
eJ : Then there exists a non-adaptive J-junta test, which makes 2sh ¼ YðJ2ln2ðJ þ

1Þ=eÞ queries, and satisfies the following:

* Every J-junta is accepted with probability at least 2=3:
* Any input which is not an ðe; JÞ-junta is rejected with probability at least 2=3:

Proof. As in the size test, the two-sided test randomly partitions the coordinates into r subsets. In
order to reduce the number of queries, the two-sided test finds subsets in the partition that have
non-negligible variation by applying the independence test to blocks of such subsets (see
Definition 7), like the adaptive test presented above, only here these blocks are chosen differently
and may overlap.

The two-sided test. First, the test randomly partitions the coordinates into r subsets I1;y; Ir:
Then it picks s random subsets L1;y;LsD½r� of size J independently, each by uniformly choosing

without repetitions J members of ½r�: Each set Ll determines a block Bl ¼def
S

jALl
Ij; to which the

test applies h iterations of the independence test.
Acceptance conditions. The test declares a block Bl to be variation-free if none of the

independence test iterations applied to Bl finds f to depend on it. If Bl is declared variation-free,
then all the subsets Ij contained in it are declared to be variation-free on its behalf. The test

accepts f if both of the following conditions hold.

* At least half of the blocks B1;y;Bs are declared variation free.
* Except for at most J subsets, every subset in the partition I1;y; Ir is declared variation-free on

behalf of some block.

Properties of the test. It is obvious that the test performs 2sh queries, as required. It is left to
show that a J-junta is accepted by the test with probability at least 2=3; and that an input which is
not an ðe; JÞ-junta is rejected with probability at least 2=3: This is proven in the next two lemmas.

Lemma 4.2 (Completeness). If f is a J-junta, then it passes the two-sided test with probability at

least 2=3:

Proof. Fix any partition I1;y; Ir: If f is a J-junta, then it is independent of all subsets in the
partition, except for at most J of them. Hence for any fixed l; the probability over the selection of
the blocks that f is independent of Bl is at least

r � J

J

� �
r

J

� ��
4

r � 2J

r � J

� �J

¼ 1� J

r � J

� �J

41� J2

r � J
X
14

15
:

The probability that f depends on more than half of the blocks is therefore smaller than 2
15
o1

6
;

using the Markov inequality. Hence with probability at least 1� 1
6
; at least half of the blocks are

declared variation-free, and the first acceptance condition holds.
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Now fix j such that f does not depend on Ij; and let us bound the probability that it is not

declared variation-free. Conditioned on the event that f does not depend on Bl ; the probability
that in addition Bl contains Ij is at least J=r ¼ 1=16J: Hence Ij is declared variation-free on behalf

of Bl with probability at least 1=20J; for every fixed l: The probability that Ij is not declared

variation-free is therefore bounded by

1� 1

20J

� �s

¼ 1� 1

20J

� �20Jð3þln rÞ
o

1

6r
:

It follows that with probability at least 1� 1
6
; all the subsets in the partition on which f does not

depend are declared variation-free (and in this case the second acceptance condition is fulfilled).
Overall we have that with probability at least 2=3; both conditions for acceptance are
satisfied. &

Lemma 4.3 (Soundness). If f passes the two-sided test with probability higher than 1=3; then it is an
ðe; JÞ-junta.

Proof. Let t ¼ eJ
3er

and let J denote the set of all coordinates i for which VrfðfigÞ4t: As shown in

Section 3, it suffices to prove that jJjpJ and that VrfðJÞo2e: Assume on the contrary that this is
not the case, and let us prove that the two-sided test rejects with probability at least 2=3:

First case, jJj4J: As in the proof of Proposition 3.1, if jJj4J then with probability at least
3=4 there are at least J þ 1 subsets in the partition I1;y; Ir with variation at least t: To conclude
this case, we show that the probability of each such subset being declared variation-free is

bounded by 1
12ðJþ1Þ:

Let Ij be a subset whose variation is at least t; and let Bl be a block that contains it. By the

monotonicity of the variation we have VrfðBlÞ4t; so each iteration of the independence test on Bl

detects a dependency of f on Bl with probability at least t=2: The probability of Bl being declared
variation-free is therefore bounded by

ð1� t=2Þh ¼ ð1� t=2Þ2�ð3þ2 ln sÞ=to
1

12sðJ þ 1Þ:

Since Ij is contained in at most s blocks, the probability of it being declared variation-free is

bounded by 1=12ðJ þ 1Þ; as required.
Second case, VrfðJÞX2e: Let us fix one index l; and show that Bl has high variation with very

high probability. This will imply that with high-probability, the number of blocks not declared
variation-free is larger than s=2; and the test rejects.
It follows from the procedure of choosing the partition and the blocks, that Bl is in fact a

random set of coordinates, independently containing each coordinate iA½n� with probability J=r

(to see this, note that its choice is equivalent to first choosing Ll and only then choosing the
partition I1;y; Ir). We now consider the unique-variation as in Definition 6, only with respect to
the set J as defined here. Then the expectation of UrfðBlÞ is given by

E½UrfðBlÞ� ¼
J

r

X
iA½n�

UrfðiÞ ¼
J

r
VrfðJÞX2eJ=r:
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Moreover, the unique-variation of Bl is a sum of non-negative independent random variables,
each bounded by t: It thus follows from Lemma 3.4 and Proposition 3.5 that

Pr VrfðBlÞo
eJ
er

� �
pPr UrfðBlÞo

eJ
er

� �
oexp � eJ

ert

� �
¼ e�3o1=12:

We say that a block Bl is detectable if its variation is at least eJ=er: The expected number of
non-detectable blocks is therefore smaller than s=12: It follows from the Markov inequality that

with probability at least 1� 1
6
; there are less than s=2 non-detectable blocks, and therefore there

are more than s=2 detectable blocks. The probability of a detectable block being declared
variation-free is bounded by

1� eJ
2er

� �h

oexpð�ð9þ 6 ln sÞÞo 1

6s
;

and therefore with probability at least 1� 1
6
; none of the detectable blocks are declared variation-

free. Overall we have that with probability at least 2=3; the number of detectable blocks is more
than s=2; and none of them is declared variation-free, and therefore the test rejects. &

This concludes the proof of Theorem 6. &

5. The compact test

In this section we describe and analyze a two-sided ðe;OðJ4lnðJ þ 1Þ=eÞÞ-test for the property of
being a J-junta. This test is restricted to boolean functions defined over the discrete cube (namely

Pð½n�Þ ¼ f0; 1gn) with the uniform measure. The algebraic approach of this test, combined with
the fact that we do not insist on a 1-sided error, allows for a more compact analysis.

An overview of the testing algorithm. Let f : f0; 1gn-f�1; 1g be a J-junta. Let V ¼def VðfÞ be the
set of all elements vAf0; 1gn that are 0 on all the variables that f depends on. Then V is clearly a

subspace of f0; 1gn (when viewed as a vector-space over the field f0; 1g) of co-dimension at most
J; and, moreover, it is an ideal under the bitwise AND operation, namely xAV implies that
x4yAV for every y: The crucial property of V is that any xAV is an invariant shift for f : for any

zAf0; 1gn we have fðx"zÞ ¼ fðzÞ: Given f; our test looks for evidence to the existence a large ideal

of invariant shifts for f: Specifically, we sample points in f0; 1gn and check whether they lie in such

an ideal V : Since jV j could be exponentially small in relation to jf0; 1gnj; we sample according to a

biased product distribution over f0; 1gn:

Definition 8. Let m1=J denote the product measure on f0; 1gn; assigning to each bit 1 with

probability 1
Jþ1

; and 0 with probability 1� 1
Jþ1

:

It is easy to see that for any choice of a J-junta f we have m1=JðVÞ ¼ ð1� 1
Jþ1Þ

J
Xe�1:
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Given a point x chosen according to m1=J ; we randomly choose a logarithmic number of points

yAf0; 1gn according to the uniform distribution. For each of these choices we test that x4y is an

invariant shift for f by choosing uniformly at random a quadratic number of points zAf0; 1gn; and
checking whether fðzÞ ¼ fðz"ðx4yÞÞ:
Our testing algorithm will estimate the probability that a point x selected according to m1=J

behaves like an invariant shift, and accept f only if this estimate is sufficiently large.

Alternative algorithm for testing J-juntas. Let C be a sufficiently large constant. Set m ¼ C � J2;

t1 ¼ C logðJ þ 1Þ; and t2 ¼ C J2

e We perform the following:

Choose m points x according to m1=J : For every selected x; choose t1 points y uniformly from

f0; 1gn: For each choice of x and y choose t2 points z uniformly from f0; 1gn: All the choices are
independent.
For every selected point x check whether fðzÞ ¼ fðz"ðx4yÞÞ for every z and y that were

selected for x: If this equality holds for every z and y then we say that x passed the check.

If the fraction of points x that passed the check is at least ð1� 1
Jþ1

ÞJ � 1
20ðJþ1Þ then return

‘‘ACCEPT’’. Otherwise return ‘‘REJECT’’.

One observes that the query complexity of the algorithm is Oðm � t1 � t2Þ ¼ OðJ4lnðJ þ 1Þ=eÞ; as
required.
We next show that the test accepts every J-junta with probability at least 2=3:

Definition 9. For vAf0; 1gn let sðvÞ ¼def Prz½fðzÞ ¼ fðz"vÞ�:
For xAf0; 1gn; let pðxÞ denote the probability that x passes the check, that is fðzÞ ¼

fðz"ðx4yÞÞ for every z and y selected by the algorithm.

Let pðfÞ ¼def ExBm1=J
½pðxÞ� be the probability that a point x selected according to m1=J passes the

check.

Lemma 5.1 (Completeness). If f is a J-junta then the test returns ‘‘ACCEPT’’ with probability at

least 2=3:

Proof. Note that pðxÞ ¼ 1 for every xAVðfÞ; and that m1=JðVðfÞÞXð1� 1
Jþ1

ÞJ : Therefore

pðfÞXð1� 1
Jþ1

ÞJ : By Chernoff’s inequality, for a sufficiently large constant C; if we take m ¼
CJ2 points x; then with high probability, the fraction of points that pass the check is at least

ð1� 1
Jþ1

ÞJ � 1
20ðJþ1Þ; causing the test to return ‘‘ACCEPT’’ with high probability. &

5.1. Soundness of the compact test

From this point on we focus on showing that if f is accepted with probability greater than 1=3;
then it is e-close to being a J-junta. Suppose that indeed the test returns ‘‘ACCEPT’’ with
probability greater than 1=3: Then by Chernoff’s inequality, (assuming the constant C in the
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expression for m ¼ C � J2 is sufficiently large), necessarily, pðfÞXð1� 1
Jþ1

ÞJ � 1
10ðJþ1Þ: The next

definition will be useful in our analysis.

Definition 10. For two points v;xAf0; 1gn; we denote vpx if vipxi for every iA½n�: A point

xAf0; 1gn is said to be good, if for a uniformly distributed vpx;

Prvpx sðvÞX1� e

80ðJ þ 1Þ2

" #
4
1

2
:

Let GDf0; 1gn denote the set of all good x’s.

Note that choosing vpx uniformly is the same as choosing yAf0; 1gn uniformly and then
setting v ¼ x4y: It is not hard to choose the constant C (defined in the testing algorithm) so that

if x is not good, then pðxÞpð1
2
þ ð1� e

80ðJþ1Þ2Þ
t2Þt1pð3

4
Þt1p 1

10ðJþ1Þ: Let 1fGg denote the characteristic

function of the set G: Then we have

m1=JðGÞ ¼ ExBm1=J
½1fGgðxÞ�XExBm1=J

½1fGgðxÞpðxÞ�

X pðfÞ � 1

10ðJ þ 1ÞX 1� 1

J þ 1

� �J

� 1

5ðJ þ 1Þ:

We now state our main claim, which, together with Proposition 3.2, completes the proof.

Claim 5.2. If m1=JðGÞX 1� 1
Jþ1

� �J

� 1
5ðJþ1Þ; then there exists a set J; jJjpJ; such that VrfðJÞpe

2
:

The proof of Claim 5.2 requires the following lemmas.

Lemma 5.3. For every vAf0; 1gn;
P

R: wRðvÞ¼�1
#f2ðRÞ ¼ 1� sðvÞ:

Proof. Let gðxÞ ¼def fðx"vÞ: Then #gðRÞ ¼ #fðRÞwRðvÞ for every RD½n�: Consequently,

2sðvÞ � 1 ¼ /f; gS ¼
X

RD½n�

#fðRÞ#gðRÞ ¼
X

R: wRðvÞ¼1

#f2ðRÞ �
X

R: wRðvÞ¼�1

#f2ðRÞ:

On the other hand,
P

#f2ðRÞ ¼ 1; so the above yields 1� sðvÞ ¼
P

R: wRðvÞ¼�1
#f2ðRÞ: &

Lemma 5.4. If x is good, then sðvÞX1� e
40ðJþ1Þ2 for every vpx:

Proof. Since by the definition of a good point x (Definition 10) more than half of the points vpx

satisfy sðvÞX1� e
80ðJþ1Þ2; every vpx can be written as v ¼ v1"v2 where v1 and v2 are two such

points. Therefore
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sðvÞ ¼Prz½fðzÞ ¼ fðz"vÞ�XPrz½ðfðzÞ ¼ fðz"v1ÞÞ4ðfðz"v1Þ ¼ fðz"v1"v2ÞÞ�

X sðv1Þ þ sðv2Þ � 1X1� e

40ðJ þ 1Þ2
: &

Lemma 5.5. Suppose x is good, and let AxD½n� be the set of coordinates i for which xi ¼ 1: ThenX
R-Axa|

#f2ðRÞp e

20ðJ þ 1Þ2

Proof. By combining Lemmas 5.4 and 5.3 we get that for all possible wpx it holds thatX
R: wRðwÞ¼�1

#f2ðRÞ ¼ 1� sðwÞp e

40ðJ þ 1Þ2
:

Averaging this inequality over all wpx; and observing that for R-Axa|; exactly half of the
possible w satisfy wRðwÞ ¼ �1; we obtainX

R-Axa|

#f2ðRÞ ¼ 2Ewpx

X
R: wRðwÞ¼�1

#f2ðRÞ

24 35p e

20ðJ þ 1Þ2
: &

Proof of Claim 5.2. Averaging the inequality of Lemma 5.5 over all x in G; according to m1=J we

obtainX
R

#f2ðRÞ
m1=JðfxAG: R-Axa|gÞ

m1=JðGÞ
p

e

20ðJ þ 1Þ2
: ð1Þ

Now consider single coordinates i that satisfy

m1=JðfxAG: xi ¼ 1gÞ
m1=JðGÞ

p
1

10ðJ þ 1Þ2
: ð2Þ

We claim that there are at most J such coordinates. Indeed, if it were otherwise, let B be a set of

J þ 1 such singletons, and for each iAB let Gi ¼deffxAG: xi ¼ 1g: Then G\,iABGiDfx : xi ¼
0: 8iABg; and therefore,

1� 1

J þ 1

� �Jþ1

¼ m1=Jðfx: 8iAB xi ¼ 0gÞ

X m1=JðG\,iAB GiÞXm1=JðGÞ 1� 1

10ðJ þ 1Þ

� �
X 1� 1

J þ 1

� �J

� 1

5ðJ þ 1Þ

 !
1� 1

10ðJ þ 1Þ

� �
4 1� 1

J þ 1

� �Jþ1

and we reach a contradiction.
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Let J be the family of coordinates that satisfy (2). We have shown jJjpJ: Now, for any
RD/ J;

m1=JðfxAG: R-Axa|gÞ
m1=JðGÞ

X
1

10ðJ þ 1Þ2

and therefore, by (1)X
R-Ja|

#f2ðRÞp10ðJ þ 1Þ2 e

20ðJ þ 1Þ2
¼ e

2
;

completing the proof of the main claim. &

6. Lower bounds and a random walk on Z
q
2

To prove the lower bound we use Yao’s principle, which states that to show a lower bound on
the complexity of a randomized test, it is enough to present an input distribution for which any
deterministic test with that complexity is likely to fail.

We define distributions DP;DN on positive (J-junta) and negative (1
2
-far from any J-junta) input

functions, respectively. Our input distribution first chooses DP or DN with equal probability and
then draws an input according to the chosen distribution. We show that there exists a constant C

such that every deterministic non-adaptive test with qpC
ffiffiffi
J

p
=logðJÞ queries has an error

probability larger than 1=3 (with respect to the induced probability on inputs). For this purpose

we show that for any set of qpC
ffiffiffi
J

p
=logðJÞ vertices of the hypercube, the distributions DP and

DN induced on f�1; 1gq by restricting the functions to these q vertices have a variation distance

less than 1
3
:

The distributions DP and DN are simply uniform distributions over characters wS of size J and

J þ 2 respectively. We will, however, work instead with two auxiliary distributions, D̃P and D̃N ;

which are close to DP and DN ; and which are easier to analyze. To choose a function from D̃P; we
first choose a random set SD½n�; jSjpJ; in the following manner: We pick uniformly and
independently J random elements in ½n� (with repetitions), and take S to be the set of elements that
were selected an odd number of times. We then take the character wS to be our function. The

distribution D̃N is defined in the same manner, only we start by picking J þ 2 elements in ½n�:
Note that if jSj4J; then the character wS is 1

2
-far from any J-junta, and that both jDP � D̃Pj and

jDN � D̃N j are bounded by O J2

n

� �
: Since Theorem 2 is stated for tests whose number of queries

does not depend on n; we may and will assume in the following that n is large enough, i.e. that

J ¼ oð
ffiffiffi
n

p
Þ:

Now, consider the distributions induced by D̃P and D̃N on f�1; 1gq: Let r1;y; rq be the queries,

and let M be a q � n boolean matrix, with rows r1;y; rq: To choose an element x of f�1; 1gq

according to the first distribution, we choose at random, allowing repetitions, J columns of M and

sum them up modulo 2. This gives us an element y of f0; 1gq:We take x ¼ ð�1Þy; where the power

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

E. Fischer et al. / Journal of Computer and System Sciences ] (]]]]) ]]]–]]]24

YJCSS : 1975



UNCORRECTED P
ROOF

operation is performed coordinate-wise. The same holds for the second distribution, the only
difference being that we choose J þ 2 columns.

For xAZ
q
2; let PðxÞ be the probability of choosing x when we pick a column of M at random.

Consider a random walk on Z
q
2Df�1; 1gq; starting at 0, in which at every step we choose an

element of the cube according to P and add it to the current location. Let Pt be the distribution
induced by this walk after t steps. Note that PJ and PJþ2 are precisely the distributions induced by

D̃P and D̃N : Note also that Pt is the distribution of Y"Y"?"Y ; where we sum t independent

copies of a Z
q
2-valued random variable Y ; taking every value x with probability PðxÞ:

We want to show that for t sufficiently large compared to q; the distributions Pt;Ptþ2 are close
in the variation distance. This is Theorem 3, presented in the introduction. Theorem 2 (see the
introduction) now follows as an immediate corollary.
Theorem 3 is proven below. We first give a very brief overview of the proof. Every element x of

Z
q
2 defines a partition of the space into a subspace V0 ¼ fy : /y;xS ¼ 0g and its complement V1:

We say that x is a degenerate direction if the probability of either of these sets according to P is at

most Õðq�1Þ: The proof is inductive on the dimension q: We distinguish between two cases: if
there are no degenerate directions, then the random walk is exponentially close to being stationary

after Õðq2Þ steps, and the claim holds. If, on the other hand, there is a degenerate direction x; then
the walk ‘splits’ into two ‘independent’ walks, one on V0 and one on V1; each of which is

isomorphic to Z
q�1
2 ; and we can use induction.

6.1. Proof of Theorem 3

Let us consider the distribution Pt of the walk at time t: Recall that the distribution of the sum
of two independent random variables is the convolution of their distributions, ðP � QÞðxÞ ¼P

y PðyÞQðx"yÞ: This implies that Pt is the t-wise convolution of P; which we will denote by P�t:

Now, for any rpt we have

jPt � Ptþ2j ¼ jP�t � P�ðtþ2Þj ¼ jP�ðt�rÞ � ðP�r � P�ðrþ2ÞÞj ¼ jP�ðt�rÞ � ðPr � Prþ2Þj:

The following fact is well-known and easy: for any two functions f; g on Z
q
2 it holds that jjf �

gjj1p2qjjfjj1jjgjj1: Taking into account that P�ðt�rÞ is a distribution we deduce

jPt � Ptþ2j ¼ jP�ðt�rÞ � Pr � Prþ2ð Þj ¼ 2q�1 � jjP�ðt�rÞ � Pr � Prþ2ð Þjj1
p 2q�1 � jjPr � Prþ2jj1 ¼ jPr � Prþ2j:

Therefore, the distance jPt � Ptþ2j is monotone non-increasing in t; and we are interested in the

first time t ¼ tðqÞ for which Pt and Ptþ2 are d-close. We show that tðqÞpO
log

1
d

d � bðqÞ
� �

; where we

set bðqÞ ¼def q2 log2ðq þ 1Þ:
In order to complete the proof of Theorem 3, we let S be the sum of the convergent seriesP
N

k¼1
k

bðkÞ; and show that there exists an absolute constant C; such that for any tXC
log

1
d

d � bðqÞ and

any distribution P on Z
q
2 we have jPt � Ptþ2jp

d
S
�
Pq

k¼1

k

bðkÞ:
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The proof is by induction on q: We will assume, where needed, that C is sufficiently large. We

set t ¼ C
log1d
d

� bðqÞ; assuming without loss of generality that this is an integer.

The case q ¼ 1 is easy. It is possible to show that for a distribution P on Z2 with Pð0Þ ¼ p and

Pð1Þ ¼ 1� p; we have jPt � Ptþ2j ¼ 1
2
jð2p � 1Þt � ð2p � 1Þtþ2j: A simple analysis shows that if

tXC
log

1
d

d ; then the last expression is at most d
S
:

Assume now that the claim holds for q � 1: We proceed with simple Fourier analysis, and show
that our claim is true if all the non-zero Fourier coefficients of P are relatively small (a nice way to
see this, though the actual proof is even simpler, is that this condition on the Fourier coefficients
implies that Pt converges rapidly to the uniform distribution U ; and
jPt � Ptþ2jpjPt � U j þ jU � Ptþ2j). We have

jPt � Ptþ2j2 ¼ 22q�2jjPt � Ptþ2jj21p22q�2jjPt � Ptþ2jj22

¼ 22q�2
X

R

ð bPtPtðRÞ � dPtþ2Ptþ2ðRÞÞ2 ¼ 1

4

X
R

ðatðRÞ � atþ2ðRÞÞ2; ð3Þ

where aðRÞ ¼def 2qP̂ðRÞ:

Clearly, að|Þ ¼
P

x PðxÞ ¼ 1: Now consider the case in which, for all Ra| we have jaðRÞjp1�
dqffiffiffi

C
p

bðqÞ: In this case, the right-hand side of (3) is at most

X
Ra|

a2tðRÞp2q 1� dqffiffiffiffi
C

p
bðqÞ

 !2C
log

1
d

d bðqÞ

p2q exp �2
ffiffiffiffi
C

p
log

1

d
q

	 

:

This is smaller than d
S
pd

S

Pq
k¼1

k
bðkÞ:

It remains to deal with the case where P has large Fourier coefficients. Let R be such that

jaðRÞjX1� dqffiffiffi
C

p
bðqÞ:

We now give a formal definition of a degenerate direction. We define x of Z
q
2 to be degenerate if

either PfV0g or PfV1g is at most dq

2
ffiffiffi
C

p
bðqÞ: Here V0 ¼ fy :/y; xS ¼ 0g; and V1 is the complement

of V0:
We claim that R is degenerate. Indeed aðRÞ ¼ PfV0g � PfV1g: Therefore, if aðRÞX0 then

PfV1gp dq

2
ffiffiffi
C

p
bðqÞ: Otherwise, PfV0gp dq

2
ffiffiffi
C

p
bðqÞ:

We make two assumptions for the sake of clarity: we assume that R ¼ e1 ¼defð10?0Þ; and that

aðRÞX0: We omit the (straightforward) proof that both assumptions do not lead to loss of
generality (for the second assumption it is indeed important that we compare Pt to Ptþ2; and not
to Ptþ1).

Observe that the cube f0; 1gq is now partitioned into two subcubes V0 ¼ fx : x1 ¼ 0g; and
V1 ¼ fx : x1 ¼ 1g; both of which are isomorphic to Z

q�1
2 : Because of the degeneracy of e1; the

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

E. Fischer et al. / Journal of Computer and System Sciences ] (]]]]) ]]]–]]]26

YJCSS : 1975



UNCORRECTED P
ROOF

walk will find it hard to leave the subcube it is in, and we will ‘split’ it into two walks, on V0 and
on V1; and use the induction hypothesis for these walks.

For i ¼ 0; 1 and for r ¼ t; t þ 2 we set Pi
r ¼
defðPr j ViÞ: All four distributions so obtained can be

viewed as distributions on Z
q�1
2 :

We write Pt as a convex combination Pt ¼ PtðV0ÞP0
t þ PtðV1ÞP1

t ; and do the same for Ptþ2:

Note that jPtðV0Þ � Ptþ2ðV0Þjp dqffiffiffi
C

p
bðqÞ: We will show, using the induction hypothesis, that for

i ¼ 0; 1 we have

jPi
t � Pi

tþ2jp
d
S

Xq�1

k¼1

k

bðkÞ þ
q

2bðqÞ

 !
:

This will conclude the proof, since

jPt � Ptþ2jp 2jPtðV0Þ � Ptþ2ðV0Þj þ jPtðV0ÞðP0
t � P0

tþ2Þ þ PtðV1ÞðP1
t � P1

tþ2Þj

p
d
S

Xq�1

k¼1

k

bðkÞ þ
q

2bðqÞ

 !
þ 2dqffiffiffiffi

C
p

bðqÞ
p

d
S

Xq

k¼1

k

bðkÞ:

Let P0 ¼ ðP j V0Þ and P1 ¼ ðP j V1Þ: Let Nr be a random variable counting the number of times
the walk makes a step in direction x with x1 ¼ 1 during the first r steps.
Let i ¼ 0; the other case is treated similarly. The central (though simple) point of the argument

is that for any r and for any even c we have

ðP0
r j Nr ¼ cÞ ¼ ðP1Þ�c � ðP0Þ�ðt�cÞ:

This is true because the distribution on the left hand side is the distribution on Z
q�1
2 given that the

walk makes c ‘odd’ steps, x with x1 ¼ 1; and r � c ‘even’ steps, x with x1 ¼ 0: Since the addition in

Z
q
2 is commutative, we might as well assume that all the odd steps were made first, giving the right

hand side.

Therefore, P0
r can be written as a convex combination

P0
r ¼

X
cpr;ceven

PrðNr ¼ cÞðP1Þ�c � ðP0Þ�ðt�cÞ:

Using this, we can bound jP0
t � P0

tþ2j:

jP0
t � P0

tþ2jpPrðNtaNtþ2Þ þ Pr NtX

ffiffiffiffi
C

p
log

1

d
q

� �
þ

X
cp

ffiffiffi
C

p
log

1
dq;ceven

PrðNt ¼ cÞjðP1Þ�c � ððP0Þ�ðt�cÞ � ðP0Þ�ðtþ2�cÞÞj: ð4Þ

The first summand in (4) is equal to the probability that an odd step was made in one of the times

t þ 1; t þ 2; and this is at most dqffiffiffi
C

p
bðqÞ:
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As to the second summand, observe that Nt is a binomial random variable with parameters

t ¼ C
log

1
d

d bðqÞ and pp dq

2
ffiffiffi
C

p
bðqÞ: The probability of the second summand is that of NtX

ffiffiffiffi
C

p
log 1

dq;

and this, using Chernoff bounds, is at most expf�2
ffiffiffiffi
C

p
log 1

dq=27g:
Thus, the sum of the two first summands is bounded from above by d

S
� q
2bðqÞ: It remains to deal

with the third summand. For cp
ffiffiffiffi
C

p
� log 1

d � q we have t � cXC
log

1
d

d � bðqÞ �
ffiffiffiffi
C

p
� log 1

d �

qXC
log

1
d

d � bðq � 1Þ; and therefore we may use the induction hypothesis to conclude

jðP1Þ�c � ððP0Þ�ðt�cÞ � ðP0Þ�ðtþ2�cÞÞjpjðP0Þ�ðt�cÞ � ðP0Þ�ðtþ2�cÞjpd
S

Xq�1

k¼1

k

bðkÞ:

Consequently, the third summand in (4) is bounded from above by d
S

Pq�1
k¼1

k
bðkÞ; and

jP0
t � P0

tþ2jp
d
S

Xq�1

k¼1

k

bðkÞ þ
q

2bðqÞ

 !
;

concluding the proof of Theorem 3.

7. Testing that f is a permutation of a given h

Given a boolean function h : f0; 1gn-f�1; 1g; we say that a function f is a permutation of h if

there exists a permutation s : ½n�-½n�; such that for every x ¼ x1x2yxnAf0; 1gn we have fðxÞ ¼
hðsðxÞÞ; where we define (with a slight abuse of notation) sðxÞ ¼ xsð1Þxsð2ÞyxsðnÞ: We show a test

for this property for any h that is a J-junta. We first show a test with a linear dependence in e�1

but an exponential dependence in J; and then show how to change it to a test with a polynomial

dependence on both e�1 and J: On the other hand, a closer look at the proof of Theorem 2 shows
that it in fact proves something more than a lower bound on testing for being a J-junta: It also
provides a lower bound, which depends on J; on testing that f is a permutation of hðxÞ ¼ w½J� ¼
x1"?"xJ : This means that some dependence of the required number of queries in Theorem 4
on the junta size J is essential.
The tests constructed in the following are 2-sided. This is not a coincidence, since the following

proposition shows that in some cases one needs a number of queries that is logarithmic in n to
provide a non-adaptive 1-sided test for being a permutation of a given h: On the other hand, the
results of [GTT99] can easily be used to construct a 1-sided adaptive test for property, making a
number of queries that is logarithmic in n (and depends on the junta size as well).

Proposition 7.1. Any non-adaptive testing algorithm that makes less than logðn=2Þ queries on fðxÞ;
and accepts any permutation of hðxÞ ¼ x14x2 with probability 1, will necessarily accept some

permutation of h0ðxÞ ¼ x1 with probability at least 1
2
:
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Proof. Suppose that we are given a sequence of l ¼ logðn=2Þ queries qð1Þ;y; qðlÞ; where qðiÞ

consists of querying the value of f at the point ðxðiÞ
1 ;y; x

ðiÞ
n Þ: We define an equivalence relation

over f1;y; ng by stating that iBi0 if for every 1pjpl we have x
ðjÞ
i ¼ x

ðjÞ
i0 : We say that i is isolated

if its equivalence class is fig:
We observe that, by the choice of l; for every set of l queries there exists a set of at least n

2

coordinates that are not isolated. Thus, for every non-adaptive testing algorithm there exists a

coordinate i; such that with probability at least 1
2
it is not isolated with respect to the query

sequence chosen by the algorithm (recall that a non-adaptive algorithm has to choose its query
sequence in advance).

Now, for every query sequence qð1Þ;y; qðlÞ for which i is not isolated, and which is taken with
positive probability by the algorithm, let i0 be such that iBi0: Since the algorithm has to accept
fðxÞ ¼ xi4xi0 with probability 1, the algorithm must in particular accept this function when the

sequence qð1Þ;y; qðlÞ is chosen. But this means that the algorithm must also accept the function
f 0ðxÞ ¼ xi when this query sequence is chosen, because these two functions are identical when
restricted to the query sequence. Summing up over all query sequences for which i is not isolated,

we conclude that the algorithm must accept f 0ðxÞ ¼ xi with probability at least 1
2
; completing the

proof. &

We now turn to the proof of Theorem 4. The constructed tests are adaptive, but they can be
made non-adaptive with a penalty of an additional polyðJÞ factor. In addition, the second test can
be made to work also for the case where the domain of f is On; for some finite O equipped with a
(possibly biased) measure m; only in this case the number of queries has to depend on jOj as well.
These extensions are outlined at the end of the section. On a related issue, Appendix B contains an
application of Theorem 1 to the question discussed in [PRS01] about testing that a function is a J-
monomial.

7.1. A test with an exponential dependency on J

Before we continue, let us clarify first a notational convention used in the following. We would
like to test f for the property of being a permutation of h; where h is a function with n variables
that in fact depends only on a set J containing J (or fewer) of them. We now define g as the
function on J variables defining the values of h; that is, the function for which hðxÞ ¼ gðxjJÞ for
every xAf0; 1gn:
We assume without loss of generality that g depends on all its variables. In this case, it is not

hard to see that the variation of g on every coordinate is at least 21�J :We begin by performing the

J-junta test given by Theorem 1 on f; with minf1
4
e; 2�Jg as the approximation parameter and 7

8
as

the detection probability (we go from 2
3
to 7

8
using the usual amplification techniques). If the test

rejects then we reject the input. If the test accepts, we note that with high probability, we have sets
Ij1 ;y; Ijl of coordinates such that each of them contains exactly one member of a junta J of a

function f 0 that is close to f (with lpJ), where J is the same set as the one defined in the proof of
Theorem 1. If loJ we reject the input (since g and hence h depend on exactly J coordinates), so
from now on let us assume that l ¼ J; and for convenience denote Vk ¼ Ijk for 1pkpJ:
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For clarity, we first show how to test for the above property in the special case that g is
symmetric with regards to permutations of its variables, and then show how to generalize this to

every g: The idea is to check fðxÞ at a randomly chosen xAf0; 1gn for equality with gðxjJÞ; and
repeat this h ¼ 12e�1 times so that any fðxÞ that is 1

4
e-far from gðxjJÞ will be rejected with

probability at least 7
8
: However, since we do not know J (but only V1;y;VJÞ; we perform the

following procedure instead of a direct comparison.
The comparison procedure. Suppose that we are given a value xAf0; 1g; the sets of coordinates

V1;y;Vm (in the above context we have m ¼ J), a function g : f0; 1gm-f�1; 1g; and a
parameter s: We denote by Zx the set of the zero coordinates of x; namely Zx ¼ fijxi ¼ 0g; and
construct yAf0; 1gm as follows.
For every 1pkpm; we perform s iterations of the independence test for Vk-Zx; and do the

same for Vk\Zx: The idea is that if f is in fact a junta function dominated by J; and each Vk holds
exactly one coordinate ofJ; then with sufficiently high probability we will know whether the only
coordinate in J-Vk has received a value of 0 or 1.
For every k; if only Vk-Zx was found to have variation, we set yk ¼ 0: If only Vk\Zx was

found to have variation, we set yk ¼ 1: In the two other cases (where for the same k either both
sets or none of them was found to have variation), we immediately reject the input f and terminate

the entire algorithm. Having thus built yAf0; 1gm; we now compare fðxÞ and gðyÞ and output the
result.

A test for a symmetric g: We now show how to test that f is a permutation of h; where h is a
junta function defined by a symmetric function g: After performing the junta test and constructing

V1;y;VJ as above, we perform h ¼ 12e�1 iterations of the comparison procedure. In every

iteration we pick a uniformly random xAf0; 1gn; and use the parameter s ¼ 3 � 2Jðlog h þ
logð2JÞ þ 3Þ:
We reject the input if any of the iterations of the comparison procedure has found a mismatch

between f and g (or if any iteration of the comparison procedure rejected the input during the
calculation of y from x), and otherwise we accept the input. Assuming that the junta test has
succeeded in finding V1;y;VJ such that each of them contains exactly one member of the set J

that includes all coordinates whose variation is at least 2�J ; it is not hard to see that with

probability at least 7
8
every comparison was in fact between fðxÞ and gðxjJÞ (although we still do

not know the identity of the members of J) for the chosen x: Thus if f is e-far from being a

permutation of h then it was rejected in this stage with probability at least 3
4
; and on the other hand

if f was in fact a permutation of h then it was accepted in this stage with probability at least 7
8
: To

bound the success probability of the entire test we also have to subtract an additional 1
8
for the

possibility of failing to correctly construct V1;y;VJ :
The general case. For a general (possibly asymmetric) g we need to consider all possible

permutations of g for comparison with f: For every such permutation we perform h ¼
12JlogðJ þ 1Þe�1 iterations of the comparison procedure, this time using s ¼ 3 � 2JðlogðJ!Þ þ
log h þ logð2JÞ þ 3Þ:
We use the same set of queries for every of the J! (or less) possible permutations of g (noting

that the way the comparison procedure chooses its queries is independent of the values of g). With

probability at least 1� J!ð1=8J!Þ ¼ 7
8
all instances of the comparison procedure will construct y
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correctly from x: Given this, with probability at least 1� J!ð1=8J!Þ ¼ 7
8
we will detect the e-farness

of the input for any permutation of g for which it exists.
Our final testing algorithm accepts the input if there was any permutation of g for which a

difference was not detected (unless at any time the comparison procedure itself rejected the input
due to a failure in constructing y from x). Summing up, an input which is e-far from being any

permutation of h will be rejected with probability at least 5
8
; and an input which is a permutation of

h will be accepted with probability at least 6
8
(it could only be rejected if the J-junta test did not

detect all the junta coordinates, or if in any of the constructions of y by the comparison procedure
above, the dependence of f on Zx-Vk or on Vk\Zx for the appropriate x was not detected

correctly). It is not hard to amplify the first probability from 5
8
to 2

3
:

7.2. Reducing the dependency on J

We construct here a test for f being a permutation of g using a polynomial number of queries.
The running time itself is still exponential in J; however.
First, we perform the J-junta test with the approximation parameter e

6J
and detection

probability 15
16
: We denote Ij1 ;y; Ijl as before. However, after the size test we again use sufficiently

many iterations of the independence test to distinguish between VrfðIjkÞX e
3J

and VrfðIjkÞp e
6J

with

probability 15
16J

for every k; and discard from Ij1 ;y; Ijl also the sets whose variation is low.

Let us denote the remaining sets by V1;y;Vm:Here we allow also for the possibility that moJ;
as it could be the case that some sets containing junta coordinates (but with a small dependence of
g on them) were not detected by the size test, or were discarded in the dependence rechecking
phase. However, if m is smaller than the number of coordinates in g whose variation is at least e

3J
;

or larger than the number of coordinates in g whose variation is more than e
6J
; then we reject the

input, because such an outcome is inconsistent with the premise that f is indeed a permutation of
h:
To accommodate our function g; we consider every permutation of any function *g that can be

constructed from g as follows: Let S be any subset of the coordinates of g of size m that contains
all coordinates that have variation at least e

3J
and contains no coordinate that has variation at

most e
6J

(with respect to g). We let *g :PðSÞ-f�1; 1g be the following majority function, noting

that it is no more than 1
3
e-far from g:

*gðyÞ ¼
1 EzAPð½J�\SÞ½gðy0zÞ�X0;

�1 otherwise:

	
The total number of permutations of the functions that can be constructed from g as above is

not more than ðJ þ 1Þ!: For every such function, noting that in particular each of its coordinates

has variation at least e
6J

with respect to it, we use h ¼ 32J2e�2ð4þ J logðJ þ 1ÞÞ iterations of the
comparison procedure, with the parameter s ¼ 36e�1J logðhðJ þ 2Þ!Þ: Assuming that there was no
failure in the junta test or in the later picking of V1;y;Vm; every Vk contains exactly one
coordinate whose variation with respect to f is at least e

6J
: This implies (by the bound on the

variation of the coordinates) that the construction of y from x will be correct in all iterations with
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probability at least 7
8
: As before, we use the same set of queries for every function that was derived

from g:
Given that all comparisons were made correctly, for every function that was compared with f

we can with probability at least 1� 1=8ðJ þ 1Þ! distinguish between the case that the probability

of fðxÞ ¼ *gðyÞ is at least 1� 1
3
e; and the case that it is at most 1� 2

3
e (this is done using a standard

large deviation inequality, see for example [AS00, Appendix A]). We accept the input if at least
one permutation of one of the possible *g has the high probability for fðxÞ ¼ *gðsðyÞÞ; assuming
that it was not rejected by an iteration of the comparison procedure failing to produce y from x in
any stage (but we may still accept the input if after constructing y some of the comparisons
themselves discovered a mismatch). The correctness probabilities of this algorithm can be

amplified to 2
3
as usual.

Variations on the permutation test. The following explains how to make the test non-adaptive.
We note that the only place where information from previous queries is used in determining new
queries is where the information concerning the identity of V1;y;Vm is used for testing the
independence of Vk-Zx and Vk\Zx for every 1pkpm: If instead we make queries for testing the
independence of Ij-Zx and Ij\Zx for every 1pjpr (whenever we use the comparison procedure),

then we can place all those queries in advance, and later discard the ones corresponding to any Ij

which is not one of V1;y;Vm: Similarly, when choosing which of the Ijk to discard for

determining V1;y;Vm (right after the junta test), we can place in advance queries for every Ij and

later discard the irrelevant ones. The above makes for a polynomial penalty in the total number of
queries of the test.
As for making the test work also for non-boolean domains, this is done by changing the

comparison test to check the independence of Vk-Zr;x for every rAO; where we define Zr;x ¼
fijxi ¼ rg (and where each x is now randomly chosen from On using mn). The change in the

number of queries is a factor of ÕðjOjÞ:

8. Open problems and remarks

Relaxing the soundness requirement. Other than making the test two-sided, it is also possible to
obtain quadratic dependency on J by somewhat relaxing the soundness requirement. This is
obtained if we only require that the test accepts every J-junta, and rejects inputs which are, say,
not even ðe; 2JÞ-juntas.
To achieve the quadratic dependency on J; note that in the original size test we have chosen the

number of elements in the partition to be quadratic in J; so that any J þ 1 influential coordinates
would go into distinct subsets in the partition with high probability. If we allow juntas of size up
to 2J to be accepted, it is enough to take a partition of size only linear in J: This reduces the
number of queries by a factor of J: But since the subsets in the partition are now larger, we can
take the ‘junta threshold’ t to be linear in 1=J; and reduce by a factor of J the number of
independence test applied to each subset.

A lower bound conjecture. We believe that J2=e is a lower bound for the query complexity of
both the one-sided and the two-sided non-adaptive tests. In light of the two-sided test presented in
Section 4, if proven this would be a tight lower bound, up to logarithmic factors, for the two-sided
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test. As far as we know, it is possible that J2=e is a lower bound even for the relaxed test proposed
in the previous remark.

Reading juntas consistently. There are also interesting questions related to hardness of
approximations. In particular, it would be interesting to see what is the best error probability
(with regards to e) that can be achieved from tests that query f in a constant number of points that
is independent of e: It would also be interesting to construct list decoders (also known as consistent
readers) for juntas, in the spirit of the consistent readers for low degree polynomials used for
constructing Probabilistically Checkable Proofs [ALM+98,AS98,RS97] (see also [DFK+99]).
List decoders for long codes with a possible bias, which can be viewed as functions dominated by
a junta of one variable, were constructed and applied with good results in [DS02].

Characterizing testable properties. Another open problem goes back to the primal question of
characterizing the testable properties. This question is known to be extremely hard even to
formulate well, but partial results in the sense of proving the testability of large classes of
properties go back to [GGR98]. Now that Fourier transforms are also known to play a part in
property testing, the question arises as to whether harmonic analysis can be used in identifying
large classes of testable properties of functions.

Random walk convergence. There is also an open problem arising from the proof of the lower

bound: For what groups G (other than Z
q
2) can one prove a convergence result similar to Theorem

3? In addition, it would be interesting to improve the lower bound on the convergence rate
(remove a factor of q from the bound on t), or to give an example for which the current lower
bound is tight.

Testing permutations for non-juntas. Finally, with regards to testing that f is a permutation of a
given function h; we can pose the following question: Is there a full characterization of the
functions h for which this is easy to test? A simple example of a non-junta function h for which
there exists an easy test is the majority function of n boolean variables. On the other hand, it is
tempting to conjecture that if n is large enough with respect to J; and h is a J-junta function that is
Z-far from all ðJ � 1Þ-juntas for some fixed Z; then the number of queries that the test requires has
to depend on J: The proof of Theorem 2 already implies such a bound for some functions h;
namely, those that are characters of size J:
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Appendix A. Proof of Proposition 3.5

For 0pxpt; e�x=tp1� x
et
: This holds since e�x=t is convex as a function of x; and since the

inequality holds at the ends of the segment ½0; t�: It follows that for all i;
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E½e�Xi=t�pE 1� Xi

et

� �
¼ 1� E½Xi�

et
:

Since the expectation is multiplicative for independent variables, we have

E½e�X=t� ¼
Yl

i¼1

E½e�Xi=t�p
Yl

i¼1

1� E½Xi�
et

� �
:

We use the convexity of the above expression, together with the fact that
P

i E½Xi� ¼ a; and obtain

E½e�X=t�p 1� a
elt

� �l

pe�a=et:

The Markov inequality now yields

Pr½XpZa� ¼ Pr½e�X=t
Xe�Za=t�pe�a=et

e�Za=t
¼ e

a
et
ðZe�1Þ:

Appendix B. A new test for being a J-monomial

As a corollary of our testing algorithms for juntas, we present an algorithm that tests whether
the function is a J-monomial, namely an AND of J boolean variables and/or negations of

variables. This algorithm asks Oðe�1polylogð1=eÞÞ queries. This is slightly worse than the

algorithm in [PRS01], which is linear in 1
e: However, the resulting new algorithm is simpler.

Let J; e; and an input function f be given. First, as observed in [PRS01], if eX2�Jþ2 then the test
just needs to approximate Pr½f ¼ 1� up to an additive factor of e

4 (because for these parameters

every J-monomial is 1
2
e-close to the zero function), with sufficiently high probability. By the

multiplicative Chernoff bound, this costs a number of queries which is linear in 1
e:

Assuming that eo2�Jþ2; we first test whether f is a J-junta, or is e=8-far from any J-junta. We

use sufficiently many queries so that the test succeeds with probability at least 5
6: If the function

passes the junta test, we approximate a ¼ Pr½f ¼ 1�; asking Oð2JÞ queries, so that Pr½j#a�
ajX2�J�2�p1

6
; where #a is the approximation. We return ‘‘ACCEPT’’ if 1

2
� 2�Jo#ao3

2
� 2�J ; and

‘‘REJECT’’ otherwise. It is easy to see that this is a J-monomial test with success probability at

least 2
3
:

At this stage, it is also possible to check for the number of coordinates that appear with a
negation sign in the monomial. This is done by approximating the probability that fðxÞ ¼ 0 where

each coordinate of x is independently chosen to be 0 with probability 1
3
; and 1 with probability 2

3
:

This stage of the test is not linear in e�1; but polynomial in it (assuming that eo2�Jþ2; as
otherwise this question has little meaning due to the observations above).
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