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Abstract

Finding explicit extractors is an important derandomization goal that has received
a lot of attention in the past decade. Previous research has focused on two ap-
proaches, one related to hashing and the other to pseudorandom generators. A
third view, regarding extractors as good error correcting codes, was noticed before.
Yet, researchers had failed to build extractors directly from a good code without
using other tools from pseudorandomness. We succeed in constructing an extractor
directly from a Reed-Muller code. To do this, we develop a novel proof technique.

Furthermore, our construction is the first to achieve degree close to linear. In
contrast, the best previous constructions brought the log of the degree within a
constant of optimal, which gives polynomial degree. This improvement is important
for certain applications. For example, it was used (1) to show that approximating
VC dimension to within a factor of N1−δ is AM-hard for any positive δ.
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1 Introduction

1.1 History and background.

Sipser (2) and Santha (3) were the first to realize that extractor-like structures
can be used to save on randomness. Sipser and Santha showed the existence of
such objects, and left open the problem of explicitly constructing them. True
extractors were first defined in (4):

Definition 1 (4) E : {0, 1}n ×{0, 1}t → {0, 1}m is an ε-extractor for a class
of distributions X over {0, 1}n, if for every distribution X ∈ X the distribution
E(X, Ut) is within statistical distance ε from Um. 3 E is called strong if Ut ◦
E(X, Ut) is within ε of uniform (here ◦ denotes concatenation and Ut refers to
the same uniform distribution, i.e., not two independent copies). E is explicit
if E(x, y) can be computed in time polynomial in the input length n+ t. E is a
(k, ε)-extractor if E is an extractor for all distributions with min-entropy k. 4

Thus, extractors extract the entropy from a defective random source X ∈ X
using a small number t of additional truly random bits. The goal is to construct
extractors for any min-entropy k with t as small as possible and m, the number
of output bits, as large as possible.

Building on earlier work of Zuckerman (5; 6), Nisan and Zuckerman (4) built
an extractor with t = O(log2 n) when the entropy of the source k was high,
k = Ω(n). Srinivasan and Zuckerman (7) extended this solution to the case
k = n1/2+ε and Ta-Shma (8) further extended it to any entropy k. Also, Ta-
Shma was the first to extract all the entropy from the source. Zuckerman (9)
showed a construction with t = O(log n) working for high entropies k = Ω(n).
All of this work used hashing and k-wise independence in various forms.

Departing from previous techniques, Trevisan (10) showed a connection be-
tween pseudorandom generators for small circuits and extractors. Trevisan
used the Nisan-Wigderson pseudorandom generator (11) to construct a sim-
ple and elegant extractor that achieves t = O(log n) when k = nΩ(1) ( and t =
O(log2 n) for the general case). Trevisan’s work was extended in (12; 13; 14; 15)
to work for every k with only t = O(log n) truly random bits. These exten-
sions also made the construction more involved and added to the conceptual
complexity of the extractor.

3 Ut denotes the uniform distribution on t bits, and E(X, Ut) denotes the distribu-
tion obtained by evaluating E(x, y) for x chosen according to X and y according
to Ut. Also, see §2 for the definition of statistical distance, also known as variation
distance.
4 See §2 for the definition of min-entropy.
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k t m Ref

Ω(n) O(log n) Ω(k) (9)

any k O( log2 n
log k ) k1−α (10)

any k O(log n) k/ log n (14)

k ≥
√

nm log2 n log n + O(log(log∗ m)) m This paper

k ≥ n1/cm log n + O(c2 log m) m This paper

Ω(n) log n + O(log log n) Ω(k) This paper

any k log n + Θ(1) k + t−Θ(1) Optimal. (16)
Table 1
Milestones in building explicit extractors. The error ε is a constant.

Thus, in the current state of the art, there are two techniques that are used in
various forms and combinations and different degrees of complexity. Even after
all that work, all known constructions use t ≥ 2 log n (and often much more)
while the lower bound is only t = log n + O(1). This progress is summarized
in Table 1.1 for the case of constant error ε.

1.2 The significance of the extractor degree.

Besides their straightforward applications to simulating randomized algorithms
using weak sources, extractors have had applications to many areas in de-
randomization that are seemingly unrelated to weak sources. These include
constructing expanders that beat the second eigenvalue method (17), super-
concentrators and non-blocking networks (17), sorting and selecting in rounds
(17), pseudorandom generators for space-bounded computation (4), unap-
proximability of Clique (6) and certain ΣP

2 minimization problems (18),
time versus space complexities (2), leader election (9; 19), another proof that
BPP ⊆ PH (20), random sampling using few random bits (9), and error-
correcting codes with strong list decoding properties (21). H̊astad (22) uses
non-explicit dispersers 5 in his result that Clique is unapproximable to within
n1−α for any α > 0. The use of non-explicit dispersers make the result depend
on the assumption that NP 6= ZPP; a derandomized version would assume
that NP 6= P.

In many of these applications, extractors are viewed as highly unbalanced
strong expanders. In this view an extractor is a bipartite graph G = (V, W, E)
with V = {0, 1}n, W = {0, 1}m, and an edge (x, z) exists iff there is some

5 A disperser is a one-sided version of extractor.
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y ∈ {0, 1}t such that E(x, y) = z. Thus, the degree of each vertex of V is
T = 2t, and the extractor hashes the input x ∈ V to a random neighbor
among its T neighbors in W .

Often this degree T is of more interest than t = log T . For example, in the
samplers of (9) the degree is the number of samples; in the simulation of
BPP using weak sources (6) the degree is the number of calls to the BPP
algorithm; in the extractor codes of (21) T is the length of the code; and in
the unapproximability of Clique, the size of the graph is closely related to T .

As stated before, all previous constructions have degree T which is at least
poly(n) = poly(log |V |) while the lower bound (that matches non-explicit
constructions) is only T = Ω(n) = Ω(log |V |). Our construction breaks the
polynomial degree bound and is the first explicit construction with degree
close to linear.

Our construction was used by Mossel and Umans (1) to show that it is AM-
hard to approximate VC dimension to within a large factor. In fact, Mossel
and Umans only need that for all δ > 0 there are explicit dispersers with
degree n1+δ for sources with min-entropy nδ, and we supply an even smaller
degree.

Recently, Guruswami (23) used our construction to explicitly build error cor-
recting codes with 1− ε list-decoding and close to Ω(ε) rate. The list decoding
algorithm returns sub-exponentially many possible solutions. Guruswami also
showed ((23), Corollary 3) that extractors with small degree that work for low
entropies, lead to close to optimal list-decodable error correcting codes.

Another inapproximibailty result that requires dispersers of very low degree is
H̊astad’s result (22) that Clique cannot be approximated to within n1−α for
any constant α > 0, assuming NP 6= ZPP. The unproven assumption could
be relaxed to NP 6= P if for any positive constant γ the following disperser
could be efficiently constructed. For sources with min-entropy k = γn, the
output length should be linear in k (and hence n), and the degree should be
O(n/ log(1− ε)−1). Note that as the error ε approaches 1, the degree becomes
less than n. This dependence on ε is known non-explicitly and matches lower
bounds. Very recently such a disperser was announced (24).

1.3 Our construction.

Our construction uses error-correcting codes. Codes are known to be related
to extractors. Trevisan’s extractor can be viewed as first encoding the weak
source input x ∈ {0, 1}n with any good binary error correcting code (good
here means minimum distance close to half) and then using the truly random
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string y to select bits from the encoded string using designs. A natural question
is whether one can use a specific good code to allow y to be used in a more
efficient way. Our extractor construction is the first to do this.

Our good code is a Reed-Muller code concatenated with a good binary code.
Specifically, we view the input x from the weak source as defining a degree h
multivariate polynomial fx : FD → F over some large field F (h is about n1/D,
the size of F is slightly larger than h). We further choose a good binary error
correcting code C to encode field elements. Our code maps x to the sequence
of values C(fx(a)), where a goes over all the elements of FD.

We now use the truly random string y to choose output bits from the encoding
of x. We think of the random string y as indexing an element a ∈ FD and a
random position j of the binary code. The ith output bit of the extractor,
E(x; y)i, is

E(x; y)i =C(fx(a + (i, 0, . . . , 0)))j

i.e., the jth bit of C(fx(a+(i, 0, . . . , 0))). Thus, the construction can be viewed
as using a Reed-Muller concatenated with a good binary code for encoding,
and selecting the code evaluation on m consecutive points

a + (1, 0, . . . , 0), a + (2, 0, . . . , 0), . . . , a + (m, 0, . . . , 0)

for the output.

Notice the simple way in which we use the random string y to select the
output bits. Indeed, this gives an extractor using only t = log n + O(log m

ε
)

truly random bits. For simplicity we will focus on the bivariate case, though
the multivariate case works as well, and gives different parameters. We prove:

Theorem 2 For every m = m(n), k = k(n) and ε = ε(n) ≤ 1/2 such that
3m

√
n log(n/ε) ≤ k ≤ n, there exists an explicit family of (k, ε) strong extrac-

tors En : {0, 1}n × {0, 1}t → {0, 1}m with t = log n + O(log m) + O(log 1
ε
).

Furthermore, we can reduce the O(log m) term above to O(log(log∗ m)). To
do that we notice that our construction (and also Trevisan’s) can be viewed as
an efficient reduction from the problem of constructing extractors for general
sources, to the problem of constructing extractors for almost block sources
(defined in §3.1). We then show an efficient construction for almost block
sources. We get:

Theorem 3 For every m = m(n), k = k(n) and ε = ε(n) such that 3m
√

n log(n/ε) ≤
k ≤ n and m ≥ Ω(log2(1

ε
)), there exists an explicit family of (k, ε) strong ex-

tractors En : {0, 1}n × {0, 1}t → {0, 1}Ω(m) with t = log n + O(log ε−1) +
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O(log(log∗ m)).

Notice that while we dramatically improve the random bit complexity, both
constructions work only for entropies k = n1/2+γ and the number of output
bits is only kδ for some δ < γ. We can make the construction work for smaller
entropies by using multivariate polynomials instead of bivariate polynomials,
but then we pay in the number of the output bits and the error. Namely, we
prove:

Theorem 4 For every constant D and m = m(n) ≤ (n/ log n)1/D, there
exists an explicit family of (k, ε) strong extractors En : {0, 1}n × {0, 1}t →
{0, 1}m with k = Ω(mD−1n1/D log2 n), t ≤ log n+O(D2 log m), and ε = 1− 1

8D
.

We can also extract more output bits in the case where the entropy is large,
namely, k = Ω(n). Formally,

Theorem 5 For any constant δ > 0, there exists a constant γ and an explicit
family of (δn, 1/ log n) strong extractors E : {0, 1}n × {0, 1}t → {0, 1}m with
t = log n + O(log log n) and m = γn.

The ideas of this paper were generalized in (25) and later on in (26) to give
the best known explicit extractors and pseudo-random generators. We note,
however, that both (25) and (26) use O(log n) truly random bits, rather than
(1 + o(1)) log(n) truly random bits as in our construction.

1.4 Our proof technique.

At the highest level our proof plan resembles Trevisan’s. That is, we assume
that the distribution E(X, Ut) is not close to uniform. Also, w.l.o.g., we assume
the distribution X is uniformly distributed on its support (see Fact 6). It is
convenient to overload notation and use X to denote both the distribution and
its support. Yao’s lemma gives us a next element predictor that on average can
learn the value fx(a1+i, a2) from the values fx(a1+1, a2), . . . , fx(a1+i−1, a2),
where fx : F2 → F is the bivariate polynomial representing x. We then use
the predictor to give a small description of the elements in X. We conclude
that if E(X, Ut) is not close to uniform, then X is small. Equivalently, the
contra-positive is that if the set X is large (so the distribution X has large
min-entropy), then E(X, Ut) is close to uniform.

We now describe how we use the predictor to give a small description of the
elements in X. We play a mental game. We pick a random line L and assume
someone gives us the correct values of fx on m − 1 consecutive parallel left-
shifts of L, i.e., L− (1, 0) through L− (m− 1, 0). In other words, each point
on L is preceded by m − 1 points for which we already know the correct
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value of fx. Hence we can use the predictor to predict that point, with some
moderately good success probability. Overall, the predictor is correct for many
points on L.

We now wish to find the value of fx on the line L. Note that fx restricted to L
is a low-degree polynomial, i.e., a codeword of a Reed-Solomon code. Assume
for the moment that our predictor is correct on, say, 90% of the points on L.
Then we could find the unique low-degree polynomial which agrees with the
predicted values 90% of the time. This is the usual decoding of Reed-Solomon
codes.

Proceeding in the same way, we then learn fx restricted to L1 = L + (1, 0),
L2 = L + (2, 0), etc., until we learn enough lines to reconstruct fx itself. This
is illustrated in Figure 1.4.

We have the following stages:
(1) We query the value of fx on h− 1 parallel lines. Notice that fx restricted

to a line is a univariate degree h polynomial, so this amounts to (m−1)h
point queries.

(2) For each point on the next parallel line, we use the next element predictor
to predict the value of fx on it.

(3) We find the unique polynomial that has large agreement with our predic-
tion.

(4) We keep learning consecutive lines until we recover fx, hence also x itself.

Fig. 1. Learning fx from m− 1 lines.

In reality, our predictor is only guaranteed to be correct with probability
smaller than half. Hence unique decoding is impossible, and we will have to
use “list-decoding” of Reed-Solomon codes to narrow our choices. We will then
have to make additional “line queries” to determine the correct value of fx

restricted to the lines.

Playing this mental game, we can prove that for every set X for which E(X, Ut)
is not close to uniform, there exists a set of about mh queries (and recall that
h is about

√
n and m is the number of output bits) such that almost every

x ∈ X can be reconstructed given the answers to these queries. Note that h2

queries can always reconstruct X; our gain is that we can reconstruct the ele-
ments of X using only mh instead of h2 queries. This shows that |X| ≤ |F|mh,
or equivalently that the distribution X has min-entropy at most mh log q. We
conclude that if the distribution X has larger min-entropy, than the distribu-
tion E(X, U) is close to uniform.

The technique was inspired by work done on list decoding of Reed-Muller
codes, and its application to hardness amplification in (27). Aside from apply-
ing an error-correcting technique to a different information theoretic setting,
our proof technique has additional ideas. For example, we obtain our savings
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by learning a line using previously learned lines, and this whole notion of recy-
cling queries makes sense only in our setting and does not appear in previous
constructions.

Our construction is the first purely algebraic extractor construction, and the
first to rely solely on error-correcting codes. We believe this is a clean and
elegant way of constructing extractors.

1.5 Organization of the paper

In §2 we give formal definitions, and state the results we use from coding
theory. In §3 we give a top-down overview of the construction and the proof.
The proof is given in two parts: first (in §3.2) , a reduction to almost block
sources (that are defined in §3.1), then an extractor for such sources (stated in
§3.3). In §3.4 we put everything together to derive Theorems 2 and 3. In §3.5
we explain how to get more output bits and derive Theorem 5. In the later
sections we fill the theorems stated in the top-down overview. In §4 we show
the reduction to almost block sources and in §5 we present explicit extractors
for almost block sources. Finally, in §6 we show the higher dimensional version
of our construction and prove Theorem 4.

2 Preliminaries

Notation. Throughout, F = Fq denotes a field of prime size q. As usual,
[n] denotes the set {1, 2, . . . , n}. For S ⊆ F and a ∈ F, S + a denotes the set
{s + a : s ∈ S}. For two sets S1, S2 ⊆ F, S1+S2 = {s1 + s2 : s1 ∈ S1, s2 ∈ S2}.
All logarithms are to the base 2. We will assume, when needed, that various
quantities are integers. It is not hard to check that this has only a negligible
effect on our analysis.

We will constantly be discussing probability distributions, the distances be-
tween them, and the randomness hidden in them. In this subsection we give
the basic definitions used to allow such a discussion.

A probability distribution X over a (finite) space Λ simply assigns to each
a ∈ Λ a positive real X(a) > 0, with the property that

∑
a∈Λ X(a) = 1. For

a subset S ⊆ Λ we denote X(S) =
∑

a∈S X(a). A distribution is flat if it is
uniformly distributed over its support. The uniform distribution U on Λ is
defined as U(a) = 1/|Λ| for all a ∈ Λ. Uk denotes the uniform distribution
over {0, 1}k.
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We identify a random variable with the probability distribution it induces.
Thus, if X is a random variable, then x ∈ X denotes picking an element
x according to the distribution the random variable X induces. We denote
random variables and distributions by capital letters, and use small letters
a, x, z... to denote elements in the probability space.

The statistical distance (or variation distance) between two distributions D1

and D2 on the same space S is maxT⊆S |D1(T ) − D2(T )| = 1
2

∑
s∈S |D1(s) −

D2(s)|. We say two distributions are ε–close if their statistical distance is
at most ε. The min-entropy of a distribution D on a probability space S is
mins∈S{− log2 D(s)}.

An element x ∈ Λ1 × · · · × Λm, for some domains Λi, is an m–tuple, x = x1 ◦
. . .◦xm. Similarly, a distribution X over Λm defines m correlated distributions
X = X1 ◦ . . . ◦Xm. For 1 ≤ i ≤ j ≤ m let X[i,j] denote the random variable
Xi ◦ . . . ◦ Xj and similarly for x. Thus, Pr(X[i,j] = x[i,j]) is a shorthand for
Pr(Xi = xi ∧ . . . ∧Xj = xj).

Extractors. We gave the definition of an extractor in §1.1. As we said there,
E : {0, 1}n×{0, 1}t → {0, 1}m is a (k, ε) extractor iff it is an ε extractor for all
distributions with k min-entropy. It is well known that every distribution with
k min-entropy, for an integer k, can be expressed as a convex combination of
flat distributions with k min-entropy. In particular,

Fact 6 E is a (k, ε) extractor iff E is an ε extractor against all flat sources
with k min-entropy.

This means that to show that E : {0, 1}n × {0, 1}t → {0, 1}m is a (k, ε)
extractor, it suffices to concentrate on flat distributions X that are uniformly
distributed over some large set X of cardinality at least 2k. For each such X
we need to show that E(X, Ut) is ε–close to uniform.

Polynomials. We will use the following lemma due to Sudan.

Lemma 7 (28) Given m distinct pairs (xi, yi) ∈ F2, there are less than 2m/a
degree h polynomials p such that p(xi) = yi for at least a values of i ∈ [m],
provided that a ≥

√
2hm.

Binary Codes.

Definition 8 A binary code has combinatorial list decoding property α if every
Hamming ball of relative radius 1

2
− α has O(1/α2) codewords.

We will use codes from the following code construction due to (29).

Fact 9 (29). There is a polynomial-time (in fact, Logspace) constructible [n, k]
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code with combinatorial list decoding property α, where n = O(k/α4).

Simpler and more efficient constructions can be achieved with somewhat worse
parameters, e.g. (30; 31).

Reed-Muller codes. In an (h,D) Reed-Muller code over Fq the message
specifies a polynomial f in D variables over Fq of total degree at most h, and
the output is all the values of f over FD

q . Every polynomial in D variables
of total degree ≤ h can be represented by the coefficients of the different
monomials xi1

1 · · . . . xiD
D with i1 + . . . iD ≤ h, and there are exactly

(
h+D

D

)
such

monomials. It follows that such a code has length qD and dimension
(

h+D
D

)
.

3 Top-down overview

3.1 Almost Block Sources

Block sources were defined and studied in many early papers, most notably
(32; 33; 4; 7). We extend this definition to a β–almost block source:

Definition 10 A distribution W = W1◦. . .◦Wb is a β–almost ((n1, k1), . . . , (nb, kb))
block source if for every i = 1, . . . , b, Wi is distributed over {0, 1}ni and

Pr
w[1,i−1]∈W[1,i−1]

[H∞(Wi | W[1,i−1] = w[1,i−1]) < ki] ≤ β

If β = 0 we say W is an ((n1, k1), . . . , (nb, kb)) block source.

The following lemma shows that a β–almost block source with b blocks is bβ
close to a block source. Notice, that the penalty bβ depends linearly on the
number of blocks, a dependance that is sometimes too costly for us.

Lemma 11 A β–almost ((n1, k1), . . . , (nb, kb)) block source Z = Z1 ◦ . . . ◦ Zb

is bβ close to an ((n1, k1), . . . , (nb, kb)) block source Z ′.

PROOF. We build a sequence Zb+1, . . . , Z1 of distributions. We set Zb+1 = Z
and we define Z ′ to be Z1. Suppose we built Zb+1, . . . , Zi+1 so far, we explain
how to build Zi. We call w[1,i−1] a bad prefix if H∞(Zi | Z[1,i−1] = w[1,i−1]) < ki.
The idea is to redistribute the weight of every bad prefix w[1,i−1] uniformly over

{0, 1}ki . Formally,

10



• We let Zi have the same distribution on the first i− 1 blocks as Zi+1, i.e.,
Zi

[1,i−1] = Zi+1
[1,i−1] = Zb+1

[1,i−1] = Z[1,i−1].

• Now, for every bad prefix w[1,i−1] we let (Zi
i |Zi

[1,i−1] = w[1,i−1]) be the uni-

form distribution, and for all other prefixes we let (Zi
i |Zi

[1,i−1] = w[1,i−1]) =

(Zi+1
i |Zi+1

[1,i−1] = w[1,i−1]) = (Zi|Z[1,i−1] = w[1,i−1]).

• Finally, for j > i, if Pr(Zi+1
[1,j−1] = w[1,j−1]) > 0 we let (Zi

j|Zi
[1,j−1] = w[1,j−1]) =

(Zi+1
j |Zi+1

[1,j−1] = w[1,j−1]) , otherwise we let (Zi
j|Zi

[1,j−1] = w[1,j−1]) be the
uniform distribution.

By definition, at each stage in the process at most β fraction of the prefixes
are bad, and so at most bβ of the weight is redistributed. Thus, Z ′ = Z1 is bβ
close to Z.

Also, for any i and any prefix w[1,i], (Z1
i+1|Z1

[1,i] = w[1,i]) is either uniform

or (Zi+1
i+1 |Zi+1

[1,i] = w[1,i]). In the later case, if the prefix w[1,i] is bad this is
the uniform distribution, and otherwise it is (Zi+1|Z[1,i] = w[1,i]) and has at
least ki+1 min-entropy (because the prefix w[1,i] is not bad). In either case,
H∞(Z ′

i+1|Z ′
[1,i] = w[1,i]) ≥ ki+1.

It follows that Z ′ is bβ close to Z and is an ((n1, k1), . . . , (nb, kb)) source as
desired. 2

Nisan and Zuckerman (4) showed a simple technique for constructing efficient
extractors for block sources. Suppose we are given an ((n1, k1), . . . , (nb, kb))
block source, and b strong extractors E1, . . . , Eb with Ei : {0, 1}ni ×{0, 1}ri →
{0, 1}ri−1−ri . We denote E ′

i(x; y) = y ◦ Ei(x; y), so E ′
i : {0, 1}ni × {0, 1}ri →

{0, 1}ri−1 . Define F ′ : {0, 1}n1+...+nb × {0, 1}rb → {0, 1}r1 by

F ′(z1, . . . , zb; y)
def
= E ′

1(z1; . . . E
′
b−1(zb−1; E

′
b(zb; y)) . . .)

Notice that F ′(x; y) = y ◦ F (x; y) for some function F : {0, 1}n1+...+nb ×
{0, 1}rb → {0, 1}r1−rb .

The following lemma is implicit in (4) and explicit in (7), though without the
mention of strong extractors.

Lemma 12 (4; 7) If each Ei is a (ki, εi) strong extractor than F is a strong
ε =

∑b
i=1 εi extractor for ((n1, k1), . . . , (nb, kb)) block sources.

We finally observe that any ((1, k1), . . . , (1, k1)) block source with 2−k1 = 1
2
+α

is bα close to uniform:

Lemma 13 A ((1, k1), . . . , (1, k1)) block source Z = Z1 ◦ . . . ◦Zb, with 2−k1 =
1
2

+ α, is bα close to the uniform distribution.
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PROOF. We notice that for every prefix the probability of the next bit being
0 or 1 is at most 1

2
+α. We can again induct from i = b to i = 1 and redistribute

the weight such that it is perfectly uniform, in much the same way as is done
in the proof of Lemma 11. The resulting difference is again at most bα. 2

3.2 A reduction to almost block sources

We now present our reduction from general sources to block sources. Let F =
Fq be a field of size q �

√
n, q prime. The reduction begins by viewing

the n-bit input string x ∈ {0, 1}n as a bivariate polynomial fx : F2 → F
of total degree at most h − 1. We would like different inputs to map into
different bivariate polynomials. Every degree h−1 bivariate polynomial f can
be specified using

(
h+1

2

)
coefficients from Fq and so we need

(
h+1

2

)
log q ≥ n

which sets h = Θ(
√

n
log n

).

We now present a function Z : {0, 1}n×F2× [¯̀] → {0, 1}m. We will later show
Z reduces high entropy sources to almost block sources. We define:

The function Z

Input : x ∈ {0, 1}n.
Parameters : α, β > 0 error parameters. m - a parameter specifying

output length.

Setting : Set h =
⌈
3
√

n
log n

⌉
, q the first prime with q ≥ Ω( h

α4β4 ) and F
a field of size q.

Binary code : C is a linear binary code of dimension ` = log q, com-
binatorial list decoding property αβ

4
(see Definition 8) and length

¯̀= poly(α−1, β−1) (see Fact 9).
Random coins : a = (a1, a2) ∈ F2, j ∈ [¯̀].
Output : We associate with x ∈ {0, 1}n a function fx : F2 → F of

total degree at most h− 1. We define

Z(x; a, j)i = C(fx(a1 + i, a2))j.

For a subset X ⊆ {0, 1}n let Ut◦Z(X, Ut) denote the random variable obtained
by picking x uniformly at random from X, y uniformly at random from F2×[¯̀]
and computing y ◦ Z(x; y). We claim:

Theorem 14 Let n, α, β > 0 be arbitrary and set h, q and a field F of size
q as above. Let m ≤

√
n. For every subset X ⊆ {0, 1}n of cardinality at least

qmh the distribution

12



Ut ◦ Z(X, Ut) = Ut ◦ Z1 ◦ Z2 ◦ . . . ◦ Zm

is a β–almost ((t, t), (1, f(α)), . . . , (1, f(α))) block source with 2−f(α) = 1
2
+ α.

Furthermore t ≤ log n + O(log( 1
αβ

)) and Z can be computed in O(log q) space

and poly(q) = poly(n, 1
αβ

) time.

We first verify parameters. Since(
h + 1

2

)
log q ≥ h2

2
log h ≥ 9n

2 log n
1
2
(log n− log log n) ≥ n

two different inputs give rise to two different bivariate polynomials. Next, note
that the number of truly random bits t = log(q2) + log ¯̀. Using Fact 9, ¯̀ =

log q
poly(α,β)

, so t = log(q2 log q) + O(log((αβ)−1)) = log n + O(log((αβ)−1)). The

running time of Z is dominated by the complexity of evaluating fx(a), which
can be done with O(log q) space and poly(q) time. We prove the reduction
correctness in §4.

3.3 An ε–almost block extractor.

An extractor working on a general distribution over n input bits requires at
least t ≥ log n − O(1) truly random bits, even when the allowed error ε is
a constant (16). In contrast, the following theorem shows that extractors for
block sources require only t = O(1) truly random bits and explicitly construct
such an extractor.

Theorem 15 Let k1 ≤ 1 be a constant. For every ε = ε(n) ≥ 0, there exists a

strong extractor F : {0, 1}m×{0, 1}r → {0, 1}m′
for β–almost ((1, k1), . . . , (1, k1))

block sources with r = O(log ε−1), m′ = k1

2
m−O(log4 1

ε
+log∗ m·log ε−1) output

bits, and ε + O(β · log∗ m) error.

We prove Theorem 15 in §5.

3.4 Putting it together

PROOF. (Of Theorem 2) Suppose m = m(n), k = k(n) and ε = ε(n) are
such that 3m

√
n log(n

ε
) ≤ k ≤ n. Let us set α = β = ε

2(m+1)
and q and h as in

Theorem 14. We claim E(x; y) = Z(x; y) is the desired (k, ε) strong extractor.

By Fact 6 we can concentrate on high min-entropy flat distributions. Let X
be a flat distribution over a subset X ⊆ {0, 1}n of cardinality at least K = 2k.

13



Then k ≥ mh log q and so K = 2k ≥ qmh. By Theorem 14, Ut ◦ Z(X; Ut) is a
β–almost ((t, t), (1, f(α)), . . . , (1, f(α))) block source, with 2−f(α) = 1

2
+ α.

By Lemma 11 every almost block source is close to a block source, and so
Ut◦Z(X; Ut) is (m+1)β close to a ((t, t), (1, f(α)), . . . , (1, f(α))) block source.
Also, by Lemma 13, a block-source with one-bit blocks is close to uniform, and
so Ut ◦ Z(X; Ut) is (m + 1)(α + β) = ε close to uniform, as desired. 2

To reduce the O(log m) additive penalty in the number of truly random bits
we can use the extractor for almost block sources:

PROOF. (Of Theorem 3) Suppose m = m(n), k = k(n) and ε = ε(n) are such
that 3m

√
n log(n

ε
) ≤ k ≤ n and m ≥ 2 log2 1

ε
. Let us set α = .1, β = Θ( ε

log∗ m
).

This determines q to be Θ( h
α4β4 ) = Θ(

√
n

log n
1
β4 ). Let F(X; U) be the strong

extractor for β–almost block sources, of Theorem 15. Our extractor is

E(x; y1, y2) =F (Z(x; y1) ; y2)

That is, we first apply Z on the input x using the truly random string y1, and
then we apply the extractor F for β–almost block sources using a fresh truly
random string y2.

Correctness : Let X be a flat distribution over a subset X ⊆ {0, 1}n of
cardinality at least K = 2k. As before, |X| ≥ 2k ≥ qmh. By Theorem 14,
Ut◦Z(X; Ut) is a β–almost ((t, t), (1, f(α)), . . . , (1, f(α))) block source, with
2−f(α) = 1

2
+ α. As F is a strong extractor for almost block sources, by

Theorem 15, Ut ◦ E(X; Ut) is O(ε) close to uniform.
Parameters : By Theorem 14, the length of y1 is log n+O(log( 1

β
))+O(1) =

log n + O(log(log∗ m)) + O(log ε−1). By Theorem 15 the length of y2 is
O(log ε−1). Thus the number of truly random bits used is as required.
The output length of Z is m, and thus the output length of F is at least
f(α)

2
m−O((log∗ m)2 log ε−1) ≥ f(α)

4
m provided that m ≥ Ω(log2 1

ε
).

2

3.5 Increasing the output length

PROOF. (of Theorem 5). We combine our extractor with a known extractor
and block extractor, whose properties we describe.

14



• The strong block extractor of Reingold, et.al. (14) is a family of functions

RSW = RSWn : {0, 1}n × {0, 1}t → {0, 1}m

with the property that for every δ there exists γ = γ(δ) > 0 such that for
all flat distributions over subsets X of cardinality at least |X| ≥ 2δn, the
distribution of Ut ◦B(X; Ut) ◦X is within 1

4 log n
of a

((t, t), (
δ

2
n, 2γn), (n,

δ

4
n))

block source. A remarkable property of the construction is that the seed
length t is very small, t ≤ O(log log n).

• We also take any explicit strong extractor family with

NZ = NZn : {0, 1}n × {0, 1}t → {0, 1}m

which is a (2γn, 1
n
) strong extractor with m = γn and t = polylog(n), e.g.,

the extractor of (4).

We first use the block extractor RSW with O(log log n) truly random bits y1

to output a block source W1 ◦W2 ◦W3. Say RSW(x; y1) = (w1, w2, w3). Our
extractor then uses a fresh truly random string y2 and outputs

w1 ◦NZ(w2; E(w3; y2))

where E is the extractor from Theorem 2 (or the more complicated Theorem 3)
with polylog(n) output bits and ε = 1

4 log n
error.

To prove correctness we apply Lemma 12 with three extractors E1, E2 and E3

where E1 is the identity function E1(x, y) = x, E2 = NZ and E3 = E the
extractor from Theorem 2. The number of truly random bits is the sum of
those used for the block extractor RSW and the extractor E3 = E, which is
log n + O(log log n). The total error is the sum of the errors from the block
extractor and the two extractors, which is less than 1/ log n. 2

4 The reduction to almost block sources

To prove Theorem 14, we show that if Z is not as required, then there exists
a large subset X ′′ of X such that the answers to a small number of queries
distinguish elements of X ′′. This shows that X ′′ is small, and therefore X itself
is small. The reader may want to review the outline given in §1.4. We begin
with some definitions.

Let f : F2 → F. A query to f is either

15



• a point query of the form, “what is f(v)?” for some point v ∈ F2, or,
• a line query of the form “which polynomial among p1, . . . , pB is equal to

f restricted to the line L, denoted f |L?”. If none of the polynomials in
p1, . . . , pB equals f |L the answer is “quit”.

We will be interested in the number of possibilities a query distinguishes
among. This is q for the point queries and B for the line queries. The number
of possibilities a set of queries distinguishes is the product of the possibilities
for each query in the set.

A predictor P for bivariate polynomials is a probabilistic function which on
input a ∈ F2 makes queries Q(a) about a bivariate polynomial f : F2 → F.
The set Q(a) may be chosen at random and may or may not depend on a.
On receiving the answers to the queries from an oracle, P computes a subset
P (a) ⊆ F. P has preprocessed queries if Q(a) does not depend on a, and P
is deterministic if it does not use random coins (neither to choose Q nor to
compute its answer).

P has A possible answers if for every a ∈ F2, every possible set of queries and
every set of answers, the size of P (a) is at most A. P predicts f : F2 → F with
success p if, when the oracle answers the queries according to f ,

Pr
a∈F2 , coins of P

[f(a) ∈ P (a)] ≥ p

P predicts S ⊆ {0, 1}n with success p if, for every x ∈ S, P predicts fx with
success p.

Suppose P is a predictor for bivariate polynomials and f : F2 → F is a bivariate
polynomial. P f

Q(a) denotes the subset P (a) when the queries are Q(a) and the
oracle answers according to f . Whenever the set of queries Q is clear from the
context we denote it by P f (a). If P is deterministic, the set of queries Q is
completely determined by a and we always denote it by P f (a).

Theorem 14 follows from the following proposition:

Proposition 16 If Ut◦Z(X; Ut) is not β–almost ((t, t), (1, f(α)), . . . , (1, f(α)))
block source, 2−f(α) = 1

2
+α, then there exists a deterministic predictor for a set

X ′′ of size at least |X ′′| ≥ αβ
4
|X|, with 1 possible answer and success 1. There

are at most (m − 1)h point queries and h line queries, all preprocessed, and
each line query distinguishes at most O(1/α3β3) = o(q) possibilities. Hence
|X| = o(qmh).

Notice that while in general we need about h2

2
values to determine an arbitrary

degree h − 1 bivariate polynomial, here only about mh queries suffice. This
immediately implies X is small.
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We prove Proposition 16 in the next three subsections.

4.1 Evaluating a Point

Suppose X is such that Ut◦Z(X; Ut) is not a β–almost ((t, t), (1, f(α)), . . . , (1, f(α)))
block source and let us fix X. We define a predictor, which depends on the
subset X.

EP = EPi0 : Evaluate Point

Input : a = (a1, a2) ∈ F2

Parameter : 1 ≤ i0 ≤ m.
Queries : The query points are Q(a1, a2) =
{(a1 − (i0 − 1), a2), . . . , (a1 − 1, a2)}. Let bi denote the answer
to the query (a1 − i, a2).

Algorithm :
• For every j ∈ [¯̀] and b1, . . . , bi0−1 define the set Xj,b1,...,bi0−1

to be
all x ∈ X for which C(fx(a1 − i, a2))j = C(bi)j for every i =
1, . . . , i0 − 1. Let

gj(a) = MAJORITYx∈Xj,b1,...,bi0−1
(C(fx(a))j)

(Ties are broken arbitrarily.)
• Set g(w) = g1(w) . . . g¯̀(w).

Output : EP(w) is the set of all codewords of C that have at least
1
2

+ αβ
4

relative agreement with g(w).

Note that EP is deterministic and that the queries depend on the input a.
Also, since C has combinatorial list decoding property αβ

4
for any a, |EPfx(a)| ≤

O( 1
α2β2 ).

Lemma 17 There exists a subset X ′ ⊂ X of cardinality |X ′| ≥ αβ
2
|X| and

1 ≤ i0 ≤ m such that EP = EPi0 predicts X ′ with at most m−1 point queries,
A = O( 1

α2β2 ) possible answers and p = αβ
4

success.

PROOF. Recall that the random string y ∈ Ut indexes a point a ∈ F2 and
a value j ∈ [¯̀]. Let Az,a,j be a Boolean random variable that is one when
H∞(Zi0 |Z[1,i0−1] = z[1,i0−1], a, j) < f(α) and zero otherwise. As Ut ◦ Z(X; Ut)
is not a β–almost ((t, t), (1, f(α)), . . . , (1, f(α))) block source, by definition,
there exists an i0 ∈ {1, . . . ,m} such that Pra,j,z∈Z(Az,a,j = 1) ≥ β. Now,
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Pr
x∈X,a,j

[ gj(a) = C(fx(a))j ] = Pr
x∈X,a,j

[Az,a,j = 1] · Pr[ gj(a) = C(fx(a))j | Az,a,j = 1 ] +

Pr
x∈X,a,j

[Az,a,j = 0] · Pr[ gj(a) = C(fx(a))j | Az,a,j = 0 ]

≥ β(1
2

+ α) + (1− β)1
2

= 1
2

+ αβ

An averaging argument shows that there exists a subset X ′ ⊂ X of cardinality
at least αβ

2
|X| such that for every x ∈ X ′,

Pr
a,j

[ gj(a) = C(fx(a))j ]≥ 1

2
+

αβ

2

Another averaging argument yields for every x ∈ X ′

Pr
a

[ Pr
j

[gj(a) = C(fx(a))j] >
1

2
+

αβ

4
] ≥ αβ

4

For every a such that Prj[ gj(a) = C(fx(a))j ] > 1
2

+ αβ
4

it holds that fx(a) ∈
EP(a). It follows for every x ∈ X ′ we have Pra[fx(a) ∈ EP(a)] ≥ αβ

4
as

desired. 2

4.2 Evaluating a Line

We use procedure EP to build procedure EL (for “Evaluate-Line”) that given
a line L makes some specific queries and outputs a single polynomial over F.

EL : Evaluate Line

Input : A line L : F → F2 not parallel to the x-axis.
Algorithm :
• For every i = 1, . . . , q:

· Evaluate EP(L(i)) by making the necessary point queries.
• Form the set S = {(i, w) | i ∈ [1, q] , w ∈ EP(L(i))}.
• Compute the list G of all univariate polynomials g : F → F of

degree at most h− 1 with agreement at least αβ
8

q with S. We will
soon prove that G is always a small set, |G| ≤ O( 1

α2β2 ).

Output : Query which one of the polynomials in G is equal to f |L, and
output this polynomial. If no polynomial in G equals to f |L output
”quit”.

We now show that EL does well on random lines.
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Lemma 18 For every x ∈ X ′:

Pr
L

[ELfx(L) 6= fx(L)]≤ η = O(
1

αβq
)

Once G contains the right polynomial, the answer of ELfx(L) is correct by
definition. The lemma therefore follows from the following claim, which shows
that G almost always contains the right polynomial.

Claim 19 For every x ∈ X ′, PrL [ fx(L) 6∈ G ] ≤ O( 1
αβq

)

PROOF. Call v ∈ F2 nice for p : F2 → F if p(v) ∈ EPp(v). Fix any x ∈ X ′.
Let Yi be the random variable indicating whether L(i) is nice for fx, and
Y =

∑q
i=1 Yi. We have E(Y ) ≥ αβ

4
q, i.e., for every x ∈ X ′ we expect to see

many nice points on a random line L. We say L is bad for x if Y ≤ αβ
8

q. Since
L is a random line, the points on L are pairwise independent. Therefore,

Pr[Y ≤ E(Y )

2
] ≤ 4 · VAR(Y )

(E(Y ))2
≤ O(

αβq

(αβq)2
) = O(

1

αβq
)

If the line L is bad for x (which happens with probability at most O( 1
αβq

))

we lose. Otherwise, Y > E(Y )
2

and the line L contains at least αβ
8

q nice points
v = L(i). Therefore, fx(L) ∈ G. 2

We now show that the list decoding process does not return many possible

solutions. Since |S| ≤ O( q
α2β2 ) and q = Ω( h

α4β4 ) we have αβq
8
≥
√

2h · |S| and

therefore by Lemma 7, |G| ≤ O( |S|
αβq

) = O( 1
α2β2 · 1

αβ
) = O( 1

α3β3 ).

We now take a closer look at the point queries done in EL(L). If L is not
parallel to the x-axis then EL(L) makes point queries for each point on each
of the i0−1 lines L−(j, 0), j ∈ [i0−1]. However, since the values of fx on a line
can be determined by querying h points on that line, it suffices to query only
h points from each line, and the number of point queries is at most (i0 − 1)h.
Denote this set of point queries Q(L).

4.3 Proof of Proposition 16

PROOF. We now give a procedure EA (for “Evaluate-All”) that makes few
queries and outputs, with good probability, the unique polynomial fx ∈ X ′′

that agrees with the queries.

19



EA : Evaluate All

Input : none.
Algorithm : Pick a random line L, and query the points in Q(L).

For j = 0 to h− i0
• Evaluate EL(L + (j, 0)). Note that all of the point queries needed

to evaluate this have been made or deduced previously. Only the
line queries need to be made.
Output the unique degree h − 1 polynomial consistent with the

answers on the h× h block.

To prove Proposition 16, we need a deterministic predictor, so we show that
we can fix L suitably. Say that a line L is good for f : F2 → F if EAf

L, the
output of EAf when picking the line L, is f , and bad otherwise. Recall that
η, defined in Lemma 18, is the error probability for EL.

Claim 20 For every x ∈ X ′, PrL[L is bad for fx] ≤ hη.

PROOF. For each of the h lines we learn, the probability we fail (given the
right answers to the line we use) is at most η. By the union bound (regardless
of correlations) the claim follows. 2

Now, hη ≤ O( h
αβq

) ≤ 1
2

and therefore for every x ∈ X ′, PrL[L is good for fx] ≥
1
2
. Hence, there is at least one fixed choice of a line L and a subset X ′′ ⊆ X ′

of cardinality at least |X ′′| ≥ 1
2
|X ′| such that L is good for every x ∈ X ′′. Fix

this L. EAL is the required deterministic predictor.

Note that the number of point queries is at most (i0−1)h ≤ (m−1)h, and the
number of line queries is at most h−i0+1 ≤ h. Also, the line queries distinguish
at most O(1/(α3β3)) ≤ o(q) possibilities. Thus the predictor distinguishes at
most q(m−1)h(o(q))h ≤ o(qmh) possibilities. Since 1/(α3β3) = O(αβq), we also
conclude that |X| ≤ 4

αβ
|X ′′| ≤ o(qmh). Proposition 16 and hence Theorem 14

follow. 2

5 Extractors for almost block sources

5.1 Reducing a β–almost block source to a block source with smaller penalty

We saw that a β–almost block source with m blocks is mβ close to a block
source (Lemma 11). However, it is important for us to avoid this mβ penalty.
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The key observation is that at a price of losing at most half the entropy, if we
group ` consecutive blocks, then instead of being `β close to the behavior we
expect from a block source we are 2β close to it.

Lemma 21 Suppose Z = Z1◦. . .◦Zm is a β–almost ((n1, k), . . . , (nb, k)) block
source. For every 1 ≤ a ≤ b ≤ m

Pr
z[1,a−1]∈Z[1,a−1]

[ H∞(Z[a,b]|Z[1,a−1] = z[1,a−1]) ≤ 1
2

b∑
j=a

k ] ≤ 2β

PROOF. We say i ∈ [m] is bad for z[1,i−1] ∈ support(Z[1,i−1]) if H∞(Zi|Z[1,i−1] =
z[1,i−1]) < k. We say i is bad for z ∈ Z if i is bad for z[1,i−1]. By assumption,
for all i, Prz∈Z [i is bad for z] ≤ β. Hence, using Markov,

Pr
z∈Z

[at least half of i ∈ [a, b] are bad for z]≤ 2β

Whenever at most half of i ∈ [a, b] are bad for z, Pr[ Z[a,b] = z[a,b]|Z[1,a−1] =
z[1,a−1] ] ≤ ∏

i:i is not bad for z 2−k ≤ 2−k(b−a)/2 and the lemma follows. 2

Thus given, e.g., a β–almost ((1, f(α)), . . . , (1, f(α))) block source with m
blocks and some constant α, we can group the m blocks into, say, b meta-
blocks such that each meta-block contains at least half the desired amount of
entropy. We can then redistribute the weight of the bad strings in the same
way as is done in the proof of Lemma 11(and by Lemma 21 these are at most
O(bβ) fraction of all strings) and get a block source with b blocks and the
desired entropy. The error term O(bβ) is significantly smaller than mβ if b
is small. In the next subsection we follow this outline for a specific choice of
parameters that suits our needs.

5.2 An Extractor for a block source with very small seed

Lemma 22 Let γ be a positive constant and ε = ε(n) > 0. There exists
b = b(n) = O(log∗ n) and n1, . . . , nb, n1+ . . .+nb = n, and a strong ε-extractor
for ((n1, γn1), . . . , (nb, γnb)) block sources, using t = O(log 1

ε
) random bits, and

outputting γn−O(log∗ n log ε−1 + log4 1
ε
) output bits.

PROOF. We choose the integers ni as follows:

• nb = O(log4 1
ε
),

21



• nb−1 = 1
ε2

, and,

• ni−1 = 2n
1/6
i for i < b.

It can be verified that ni−2 ≥ 2ni and hence it follows that b = O(log∗ n). We
will need two basic extractors:

• The RRV family of strong extractors ((34),Theorem 4):

ERRV
n : {0, 1}n × {0, 1}t → {0, 1}m

which is a (k, ε) strong extractor, with t ≤ c0 log3 n log ε−1 and m =
k − 2 log ε−1 −O(1), for some constant c0.

• The Zuckerman family of strong extractors (9):

EZ
n : {0, 1}n × {0, 1}t → {0, 1}m

which is a (k = Ω(n), ε) strong extractor, with t ≤ O(log n + log ε−1) and
m = Ω(k).

We want to apply Lemma 12. For that we choose (ki = γni, εi = ε
2·2b−i ) strong

extractors

Ei : {0, 1}ni × {0, 1}ri → {0, 1}ri−1−ri .

We choose Eb to be EZ
nb

with rb = O(log nb + log ε−1) = O(log ε−1), and we
choose Ej to be ERRV

nj
for j < b. We need to verify that the extractors Ei

indeed support an output length ri−1 − ri.

Indeed, for Eb we have a constant entropy rate and rb = O(log nb + log ε−1),
hence we have rb−1 = Ω(nb) = Ω(log4 1

ε
) output bits, which is larger than

c0 log3(nb−1) log( 1
εb−1

) = 8c0 log3 1
ε
log( 1

εb−1
) ≈ 8c0 log4 1

ε
for the appropriate

choice of constant in the choice of nb. For Ej, j < b, it is easy to verify that
ri ≥ c0 · log3 ni · log 1

εi
as needed.

Having that, Lemma 12 assures us that we get a strong extractor F : {0, 1}m×
{0, 1}rb → {0, 1}r1−rb with error at most

∑
εi ≤ ε. The number of truly random

bits is rb = O(log ε−1) as desired. To analyze the number of output bits, we
notice that in applying Eb we lose at most O(nb) = O(log4 1

ε
) entropy, and

applying each Ej, j < b, we lose at most 2 log ε−1 + O(1). Altogether, we lose
at most O(b log ε−1 + log4 1

ε
) entropy. 2

5.3 Putting it together

We now prove Theorem 15.
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PROOF. (of Theorem 15)

Let Z = Z1 ◦ . . . ◦ Zm be a ((1, k1), . . . , (1, k1)) block source. We partition
the m blocks into b meta-blocks, the i’th block being of length ni (as in
Lemma 22) and

∑b
i=1 ni = m. We look at Z as W1 ◦ . . . ◦ Wb with each Wi

distributed over {0, 1}ni . By Lemma 21, W1 ◦ . . . ◦ Wb is O(bβ) close to a
((n1,

k1

2
n1), . . . , (nb,

k1

2
nb)) block source. We now apply the block source ex-

tractor of Lemma 22 with γ = k1

2
.

The number of truly random bits used is rb = O(log ε−1). The error is O(bβ)
because of the reduction from an almost block source to a block source, plus
ε from Lemma 22. The entropy loss is k1

2
n because of the reduction from

almost block sources to block sources (by far the most significant loss), plus
the entropy loss from Lemma 22. Theorem 15 follows. 2

6 The Multivariate Extractor

We now describe a generalization of the bivariate extractor to D dimensions,
where D ≥ 3. Let h be the smallest integer such that

(
h+D

D

)
log(h) ≥ n.

Let F = Fq be a field of prime size q � h. We view the n-bit input string
x ∈ {0, 1}n as a function fx : FD → F of total degree at most h. As it takes(

h+D
D

)
log q ≥

(
h+D

D

)
log h ≥ n bits to specify a polynomial, different inputs

map to different polynomials.

The function MED

Input : x ∈ {0, 1}n.

Setting : h = dD( n
log h

)1/D −De (and so
(

h+D
D

)
log h ≥ n). F is a field

of size q where q is the smallest prime larger than Ω(mmax(4,D−1)h).
We identify x ∈ {0, 1}n with a function fx : HD → F of total

degree h.
Binary code : C is a linear binary code with dimension ` = log q,

length ¯̀ and combinatorial list decoding property α = 1
8m

(see §2).
Random coins : a ∈ FD, d ∈ [D − 1], j ∈ [¯̀].
Output : ME(x; a, d, j)i = C(fx(a + ied))j for i ∈ [m]. Here ed

denotes the basis vector in FD with a 1 in the dth position and 0’s
elsewhere.

We now give a top-level proof of Theorem 4.

PROOF. (Of Theorem 4)
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We first check parameters:

t≤D log q + log D + log(log q · (m
ε

)4)

≤D log(mD−1h) + log D + log log q + O(log m)

≤O(D2 log m) + log(hD) + log log q

≤O(D2 log m) + O(D log D) + log n− log log h + log log q

= log n + O(D2 log m)

For the correctness proof, we suppose Ut ◦ME(X, Ut) is not ε close to uniform
for some X with |X| ≥ 2k, and fix X. We first establish that the assumption
that ε is close to 1 (ε = 1 − 1

8D
) implies that there are next-bit predictors in

each orthogonal direction except the last.

Lemma 23 If Ut ◦ME(X, Ut) is not ε = 1 − 1
8D

close to uniform for some

X with |X| ≥ 2k then there are tests T1, . . . , TD−1 : {0, 1}m−1 → {0, 1} and
a subset X ′ ⊆ X of cardinality at least 1

2
|X| such that for every x ∈ X ′ and

every d ∈ [D − 1]:

Pr
x∈X,a∈FD,j∈[¯̀]
y∈ME(x;a,d,j)

[Td(a, d, j, y1, . . . , ym−1) = ym]≥ 1

2
+

1

4m
(1)

We use the next bit predictors to define procedures EP(a, d) that try to predict
fx(a) given its evaluation on the m−1 preceding points in the d’th dimension.
As in the bivariate case, EP(a, d) always returns a small set of possible answers
of cardinality at most A ≤ O( 1

α2 ) = O(m2), and we prove that for every x ∈ X ′

and d ∈ [D − 1], Pra[fx(a) ∈ EPfx(a, d)] ≥ α = O( 1
m

).

To evaluate everything, we pick a random line and call Eval(d, L). Eval(d, L)
tries to compute fx on the set Ud,L = L+span{e1, . . . , ed} (for the definition of
the + operation on sets see §2). Thus, for d = 0 we have U0,L = L and we try to
learn the values of fx on the one-dimensional line L. For d = 1 we try to learn
the values of fx on a two-dimensional affine subspace U1,L = L+span{e1} and
so forth, eventually learning fx on the whole space FD, i.e., learning x itself.
We conclude that if the extractor fails then the set X ′ has a small description.
Hence the set X ′ (and therefore the set X) are small sets, and the random
variable X has low min-entropy. The contrapositive of this is Theorem 4. 2
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6.1 Preliminaries

We record a generalization of Lemma 7.

Lemma 24 Let F be a field of size q, h < q and δ > 0 such that q ≥ 16A2h/δ2.
For each element u ∈ FD assign a set Su ⊆ F of size at most A. Then there are
less than 4A/δ D-variate polynomials p of total degree h such that p(u) ∈ Su

for at least a δ fraction of points, provided that δ ≥ 2
√

2hA/|F|.

PROOF. The case D = 1 is a weakening of Lemma 7; the main difference is
that Lemma 7 is stated with absolute agreement size whereas this lemma is
stated with relative agreement size.

We now prove for general D by reducing to Lemma 7. Suppose there was a set
P of 4A/δ such polynomials. Pick a random line L, and consider a polynomial
p ∈ P restricted to L. By Chebychev, with probability at least 1− 2

δq
, at least

a δ/2 fraction of points u ∈ L satisfy p(u) ∈ Su. By the union bound, the
probability there exists a polynomial p ∈ P that does not satisfy the above is
at most 8A

δ2q
, which by our choice of q is smaller than half.

Also, for any two different degree h polynomials, their restrictions to a random
line are equal with probability at most h

q
(because a random line in partic-

ular contains a random point). 6 The probability that there exists two such

polynomials in P is at most
(

4A/δ
2

)
h
q

< 8A2h
δ2q

≤ 1
2
.

We conclude that there exists a line L that splits P (i.e., the polynomials in P
have different restrictions to L) and such that each p ∈ P has a δ/2 fraction
of agreement on the line. However, this contradicts Lemma 7. 2

6.2 A predictor in each direction

PROOF. (Of Lemma 23) Assume there exists a test T : {0, 1}m → {0, 1}
that ε = 1− 1

8D
distinguishes Ut ◦ME(X, Ut) from the uniform distribution,

i.e.,

Pr[T (Ut,ME(X,Ut)) = 1]− Pr[T (Ut+m) = 1] = ε = 1− 1

8D
.

6 The bound can be obviously improved, but the improvement is not necessary for
what we need.
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Let Ud denote the uniform distribution on a ∈ FD, j ∈ [¯̀] with d ∈ [D − 1]
held fixed, and let δd be the advantage T has on Ud, i.e.,

Pr[T (Ud,ME(X,Ud)) = 1]− Pr[T (Ut+m) = 1] = 1− δd

and notice that we must have δd > 0 for every d ∈ [D − 1] (otherwise ε can
not be that close to 1). Then, 1

D−1

∑
δd ≤ 1

8D
and therefore

∑
δd < 1

8
. By a

Markov argument, for each d, for at least a 1− 4δd fraction of x ∈ X,

Pr[T (Ud,ME(x, Ud)) = 1]− Pr[T (Ut+m) = 1] ≥ 3

4
. (2)

Therefore, the fraction of x ∈ X for which (2) holds for all j is at least
1 − 4

∑
δd > 1

2
. This set is X ′. Now, for every d ∈ [D − 1] we use Yao’s next

element predictor argument to convert T into a predictor Td with advantage
1

4m
= 2α. By the symmetry of ME , we can assume that the predictor predicts

the last bit well. We obtain that for all x ∈ X ′, Equation (1) holds. 2

6.3 Evaluating a point using a given direction

We introduce our point evaluator EP .

EP : Evaluate Point

Input : a ∈ FD, d ∈ [D − 1]
Parameters : α = 1

8m
.

Queries : The query points are a−(m−1)ed, a−(m−2)ed, . . . , a−ed;
the answers are b1, . . . , bm−1.

Algorithm : For all j ∈ [¯̀] compute

gj(a) = Td(a, d, j,C(b1)j, . . . ,C(bm−1)j)

and set g(a) = g1(a) · · · g¯̀(a).
Output : EP(a, d) is the set of all codewords of C that have at least

1
2

+ α agreement with g(a).

We note that the best possible predictor Td chooses the majority vote for
C(fx(a))j over all x that are consistent with C(b1)j, . . . ,C(bm−1)j, as in §4,
and so we could have given an alternative definition of gj(a) using that best
predictor rather than Td.

The proof of the following lemma is identical to that of the second half of
Lemma 17.
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Lemma 25 For every x ∈ X ′ and d ∈ [D − 1], Pra[fx(a) ∈ EPfx(a, d)] ≥ α.

Also, as C has combinatorial list decoding property α, for every x and d we
must have |EP(a, d)| ≤ A = O( 1

α2 ).

6.4 Evaluating All

To evaluate everything, we pick a random line and call Eval(d, L). Eval(d, L)
tries to compute fx on the set Ud,L = L+span{e1, . . . , ed}. Thus, for d = 0 we
have U0,L = L and we try to learn the values of fx on the one-dimensional line
L. For d = 1 we try to learn the values of fx on the set U1,L = L + span{e1}
and so forth.

Notice that as L itself is a one dimensional affine subspace, Ud,L is also an
affine subspace. Also, as L is picked at random, with high probability, L does
not belong to an affine translation of span{e1, . . . , ed−1}, and so for every d,
span{e1, . . . , ed−1, L} will be d–dimensional. Thus, our goal is to learn UD−1,L.

Also, if we define

Ud,L,i
def
= L + span{e1, . . . , ed−1}+ ied

then it is an affine translation of Fd, and so there is an affine translation map
φi : Fd → Ui. In the bivariate case, this corresponds to viewing the line as a
one dimensional (affine) subspace over F.

We are now ready to present the reconstruction algorithm:

27



Evalf (d, L)

Input : A line L and a dimension d. The queries are answered by f .
Algorithm :

If span{e1, . . . , ed−1, L} is not d–dimensional we fail and output
“don’t know”. Otherwise:
If d = 0 :

U = L. Query U on h points, interpolate the unique polynomial
p of degree less than h, and deduce f(x) for all x ∈ L.

For d = 1, . . . , D − 1 :
• For i = 0, . . . ,m− 2 perform Eval(d− 1, L + ied).

After this we deduce a (hopefully correct) value f̃(y) for
each i = 0, . . . ,m− 2 and y ∈ L + ied + span{e1, . . . , ed−1}.

• For i = m− 1 to h− 1

· For every u ∈ Ui
def
= L+ied+span{e1, . . . , ed−1} evaluate

EP(u, d).
Note that the queries needed for EP(u, d) have been

made or previously deduced.
· Define an affine map φi : Fd → Ui and form the set

S =
{
(v, w) | v ∈ Fd , w ∈ EP(φi(v), d)

}
.

Compute the list G of all d-variate polynomials g :
Fd → F of degree at most h with agreement at least α

2
qd

with S.
· Pick ∆ = ∆d = Θ(d log q + log 1

α
) random points

a1, . . . , a∆ ∈ Fd. Query the points φi(a1), . . . , φi(a∆), and
let b1, . . . , b∆ be the answers.

If there is a single polynomial g ∈ G such that g(ai) =
bi for i ∈ [`], then deduce that for all v, f(φi(v)) = g(v).
Otherwise output “don’t know”.

Lemma 26 PrL[Eval(d, L) 6= fx(Ud,L)] ≤ O(md−1h
αq

).

PROOF.

The probability that span{e1, . . . , eD−1, L} is not D–dimensional is at most 1
q
.

If span{e1, . . . , eD−1, L} is D–dimensional then for every d = 1, . . . , D − 1 it
must be that span{e1, . . . , ed−1, L} is d–dimensional. From now on we assume
span{e1, . . . , eD−1, L} is D–dimensional.

Let us define errord to be the probability (over choosing a random line L) that
Eval(d, L) 6= fx(Ud,L), given that all queries are answered correctly. Clearly,
error0 = 0. Also, we will soon prove the recursion:
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Claim 27 errord ≤ (m− 1)errord−1 + O( h
αq

)

and solving the recursion we get our result. 2

PROOF. (of Claim 27) The first term in the recursion comes from the stage
where i runs from 0 to m− 2 and we call Eval(d− 1, ·), which has probability
of errord−1 to fail.

Each i from m − 1 to h − 1 causes an additional error, which we analyze
analogously to EL. Call v ∈ FD nice for p : FD → F if p(v) ∈ EPp(v, d). We
know that:

• For every x ∈ X ′, Prv∈FD [v is nice for fx] ≥ α and
• For every p : FD → F and v, |EPp(v)| ≤ A ≤ O( 1

α2 ).

Fix any x ∈ X ′. Points in Ui are indexed by s ∈ F and a ∈ span{e1, . . . , ed−1},
the point corresponding to s, a being Ui(s, a) = L(s) + ied + a. For an index
v = (s, a), let Yv be the indicator random variable that is 1 iff Ui(v) is nice for
fx, and Y =

∑
v Yv. We have E(Y ) ≥ α|Ui| = αqd, i.e., for every x ∈ X ′ we

expect to see many nice points in Ui. We say Ui is bad for x if Y ≤ E(Y )/2.

Every point in Ui is uniform over all possible values (over a random choice of
L). We would like to claim that the points in Ui are pairwise independent. If
we look at two points, one indexed by v1 = (s1, a1), the other by v2 = (s2, a2),
and s1 6= s2, then clearly the two points are independent (over a random choice
of L). On the other hand they may be dependent for s1 = s2. Let us denote
v1 ∼ v2 iff s1 = s2. We have:

VAR(Y ) =
∑
v

VAR(Yv) + 2
∑
v1,v2

COVAR(Yv1 , Yv2)

≤
∑
v

E(Yv) + 2
∑
v1

∑
v2∼v1

E(Yv1Yv2)

≤E(Y ) + 2
∑
v1

∑
v2∼v1

E(Yv1)

= E(Y ) + 2qd−1E(Y ) ≤ (2qd−1 + 1)E(Y ).

Hence,

Pr[Y ≤ E(Y )

2
]≤ 4VAR(Y )

(E(Y ))2
≤ O(

qd−1E(Y )

(E(Y ))2
)

≤O(
qd−1

αqd
) = O(

1

αq
).
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If for some i ∈ [h − 1, m − 1], Ui is bad for x we lose, and this accounts for

the second error term of O( h
αq

). Otherwise, Y > E(Y )
2

and Ui contains at least
α
2
qd nice points. Therefore, fx(L) ∈ G.

We check and see that α
2
≥ 2

√
2hA/|F| (because A = O( 1

α2 ) = O(m2) and

|F| ≥ O(hm4)). Also q ≥ Ω( A
δ2 ) = Ω(m4) and q ≥ Ω(A2h) = Ω(nm4). Thus,

we can apply Lemma 24 to bound the number of polynomials in G, and we
deduce that |G| ≤ 4A

α/2
= 8A

α
. Now, a1, . . . , a∆ ∈ Fd are taken uniformly from

Fd. The probability two different polynomials of degree at most h agree on
∆ random points is at most (h

q
)∆. Therefore, the probability there are two or

more solutions that agree with the query on fx(L(ai)) for all i ∈ [∆] is at most

(
|G|
2

)(
h

q

)∆

<O(
A2

α2
(
h

q
)∆) ≤ O(

1

α6
(
1

2
)∆) ≤ 1

qd

This accounts to a third error term of order O( h
qd ) which is swallowed by the

second error term.

Otherwise, for every i = m − 1, . . . , h − 1, Ui has enough nice points, we
therefore have the correct answer in G, and the filtering leaves us with a single
answer that must be the correct answer. Thus, we learn Ud,L correctly. 2

Now let queriesd denote the number of queries made in Eval(d, ·).

Lemma 28 queriesd ≤ md−1(m + ∆)h.

PROOF. Note that queries0 = h, and for d ≥ 1

queriesd ≤ (m− 1)queriesd−1 + (h−m + 1)∆ ≤ (m− 1)queriesd−1 + h∆.

Now solve the recursion. 2

In particular, for d = D − 1 we have ∆D−1 = Θ(D log(q) + log(m)) =
Θ(D log(h) + D2 log(m)) = Θ(log(n) + D2 log(m)). Since we take D to be
a constant, this is merely Θ(log(n)). We thus see that the total number of
queries, queriesD−1, is bounded by mD−2(m + ∆)h ≤ O(mD−1h log(n)) (with
the log(n) term disappearing if m ≥ log(n)), and each query is log(q) bits. In
bits, this amounts to querying at most O(mD−1n1/D log2(n) bits.

We remark that there is nothing special about our choice of e1, . . . , eD−1. Any
set of D − 1 independent vectors will do for the construction.
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