Space Complexity Notes

In this presentation we take a closer
look at complexity classes in which the
bound is on the amount of memory it
takes to compute the problem.

Inparticular, we'll look at low
complexity classes, such as

- LOGSPACE
» Explore space complexity - and non-deterministic LOGSPACE.
* Low space classes: L, NI
Savitch's Theorem
Immerman's Theoren
TQBF Among others, we prove three

fundamental theorems regarding
those classes.

H‘\*\/"",,_.._——"‘
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Space Complexity
Savitch's Theorem
Immerman's Theorem

TQBF
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Space-Complexity

~ * Let 1:1N—1 be a complexity function

Let us recall our definition of space
complexity classes.

It is quite straightforward, however,
we need to clarify what it mean for an
algorithm to use sub linear space.

Input/Work/Output TM

L * Only tape counted

‘,.-' !oﬂﬁaﬂp g!eig!-g
r s\ ’

* Write only! No going back

For that purpose, we change a little
our model of computation to consist
of

- Aninput tape, which is read only,

- Anoutput tape, which is write only,

- And a work tape, which is the only
one counted for purposes of
complexity bounds.
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Configurations

T

may a T/ with input-size N and Lo

work-tape of size S have? What about
outpui?

Content:

Content: :Heod

input P n?.‘ivon-
5.8
-

|IZIN x N x

Let us now figure out how many
configurations such a machine has:

- The location of the heads on the
input tape and on the work tape are
counted.

- Both the content of the output tape
and the location of the head on it
are not considered in counting the
configurations.

- The content of only the work tape is
counted.

Brain Hurts

. Q arbingiepte

Corptng
S
Gaon
” -:=) A problem in NL

{L Not known to
be in L

Try to put the following computational
problems in as small a class as you can.

Try also fo come up with a problem
that is in hon-deterministic
LOGSPACE, however is not known to
be in LOGSPACE.
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5P 250 2 9 Log-space Reductions

-

A fs log-space reducible fo &
(denoted A< B)

.‘\. -~

Shere leg-space-compuieble’

. Tunetion f:2%>2*

bl 2 i.e., 1 log-space
¢ T that outputs
I's.%. for | f(w) on iUt
@V@W w -____{WEA . F@W)EB iis a IOQ—SPCCC

reduction of /A to ©

S Theorem:

<L, NL, P, NP, PSPACE and EXPTIME are closed
under log-space reductions.

4

We can now define LOGSPACE
reductions: they're the same as Karp
reductions, with the added restriction
that the reduction-function must be
computed using only logarithmic
memory.

L Closed under <,

2 Why not simply
apply i then
solve A. on the
outcome?

O
&
=

 f is a LOUGSFACE reduction from A, to A, and
A,el = AjisinL

+ on input x: Simulate M for 4. whenever M
reads the i symbol of its input, run ¥ on x and
wait for the i'" bit to be outputted

Let us now see that these reductions
can indeed be applied appropriately.

Think of the following scenario: you
have a little chip that can play a DVD
ina given format. You have a DVD
encoded with a different format.

You have another little chip that can
convert the format the DVD is
written in to the format the other
chip can read.

Isit possible to combine the two and
build a machine that can play the
DVD?

The wrong solution would be to store
the output of the first chip and apply
the second chip to that -there is
simply not enough memory for that
solution to work.

The correct solution is to run the
second chip and give it the appropriate
bits of the output of the first chip; if
necessary, restart the first chip, and
let it read the DVD from start.
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Graph Connectivity (CONN)

ﬁ

+ Is there a path from =

+ a directed graph
=/, and two
vertices ©, =/

i..i.

Let us now formally define the
connectivity problem:

Given a graph, a start vertex, and a
target vertex, is there a path from
start to target?

Q: Do you think the same problem,
however on an undirected graph, is
easier?

current position CONNeNL
Let u=s tequires logiV| Space
counting o [Vl

Begin Fori=1,.., |V| requires log|V| space

Let u= a (non-deterministic) neighbor of u

accept if u=t

E£nd For

reject (did not reach 1)

Let us first see that connectivity is in —
non-deterministic LOGSPACE.

A non-deterministic algorithm for
connectivity maintains a pointer o a
vertex of the graph.

Initially it points to the start vertex.

At every stage, the algorithm chooses
an edge going out of the vertex it
points to, and direct its pointer fo the
vertex the edge leads to.

If it reaches the target, it accepts.
If it went foo many stages, it rejects.
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NL TM

* [ead only!

| * Only tape counted
N

VRnRSS Tee

CONN wi fness:

* lkead only! No going backl! a pafh ST

1

An alternative formulation of non-
deferministic space bounded machines
is by introducing the witness tape.

The machine can only read that tape
and moreover must read it bit by bit
and never go back.

Itisenough that there exists one
possible assignment to the content of
the tape that causes the machine to
accept, for the input to be accepted.

Q: What complexity class do we get if
we allow the machine to go back on the
withess tape?

CONN is NL-Complete

. | :

+ Given I/, «, construct
in LOUGSPALE a
Ui instance

» CONN is NL-hard

Assume a T M
has 1 accepting
conrtiguration

It turns out that connectivity is non-
deferministic LOGSPACE complete.

We will show how tfo construct the
connectivity instance given a machine
M and input X, so that the machine
accepts its input if and only if the
instance is in CONN.

—

NL Completeness

Space Page 6



onenote:Arora-Barak%20Textbook.one#Chapters%201-6&section-id={7757C56D-9C4A-4928-9F21-656D3451D2C6}&page-id={7264ADE2-7C2C-4719-B0C1-8A8F429FC375}&object-id={4262E0B3-6963-4247-AA76-F109BF30DB76}&C&base-path=V:\lotan\Muli\PowerPoint_Slides\Final\OneNote

Define Configurations Graph: Gy ,

CEL S S

* Fora (M)TH M - All * (u,vjct@PEm, =
and input « configurations transition u- s
N

=

:—w WhY depend on x‘)

gsmr .T‘ \ /:cepfing g
confugumno - configuration

MVM,& M accepts x @ s>t in Gy
14

For that purpose let us introduce
the configurations' graph:

- vertexes correspond to
configurations,

- edges to transitions,

- the start vertex correspond to the
start configuration,

- and the target vertex corresponds
to the accepting configuration.

An accepting computation of the
machine corresponds fo a path from
start to target, while such a path
clearly corresponds to accepting

computation.

CONN is NL-Complete

Proof (end):

| * &, can be constructed in Log-Space

- Corollary:

|
[ NLcP
t

;
|

[ =+ CONN <Fm

\

Given a non-deterministic LOGSPACE
machine, its configuration graph can
be computed with logarithmic memory:

The algorithm simply needs to
compute, given two configurations,
whether there is a transition from one
to the other.

Asa corollary we get that non-
deterministic LOGSPACE is contained
inP.
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* that we have a language
-CONN- representing
NL

* better analyze the
complexity of space-
bounded computations

The fact that connectivity is NL-
complete is fundamental inanalyzing
space complexity classes:

Ttis crucial in the proof of the
following two fundamental theorems
we prove.

Savitch's Theorem

* VS(n) 2 log(n): NSPACE[S(n)] < SPACE[S(n)*]
S

NPFSPACE=PSFACE
Proof:

* First ML < SPACE[log®n] then generalize

* NL < DSPACE[log®n]

+ Suffice to show CONN e DSPACE[log®n]

The first is a theorem by Savitch
concerning the overhead involved in
converting a non-deterministic
computation to a deterministic one.

It furns out that the overhead in
terms of space is not that large, it is
in fact quadratic.

To prove that theorem, we will start
with the special case of NL, and
proceed to show a general technique
of how to extend such statements for
small classes to larger classes.
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' CONNeSPACE[log?n]

Is there a middle vertex
w,stui>wandw i v,

G=(V. k). is there o

Boolean PATH(u, v, d)

if (u, v) € E return TRUE

if d=1 return FALSE

 Begin ForweV

if PATH(u,w, [ d/2 |) and PATH(w,v, Ld/2.]) return TRUE _

Recursion depth = log d

End For l
log|V| space for each leve

y

return FALSE 34

Savitch's deterministic simulation
algorithm for connectivity is
recursive:

To decide if there is a path of length
d, it goes over all possible vertexes
for the middle of the path, and call
itself to decide whether the
appropriatepaths of half the lengths
exist: one from the start vertex fo
the middle vertex, and another from
the middle of vertex to the target
vertex.

The recursion depth is logarithmic in
the length of the path, and at each
level the algorithm maintains a pointer
to one vertex.

Example of Savitch's algorithm

n PATH(a,b,d) {

(a.b.c)=Is there a path from a to b, that takes no more
than ¢ steps.

[(1,4,3) TRUE I
e 7
W

3Log,(d) 19

Here is a simulation of the algorithm
on a simple example.
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O(log®n)-Space DTM for NL

Proof (Lemma, end):

* To solve CONN: call PATH(s,t,|VI|)

* NL < SPACE(log®n)

* ¥S(n) = log n

NSPACE(S(n)) < SPACE(S4(n))

20

To solve connectivity, one can simply
apply the algorithm with the number
of vertexes as the length of the path.

Now that we have proven the Theorem
for NL, we need fo extend it to
general classes. Namely, show that for
every space bound, the cost of
translating a non-deterministic
algorithm to a deterministic one is
quadratic.

A —

* For any two space constructible
functions s;(n), s (n) = logn, e(n) = n:

+ NSPACE[s,(n)] < SPACE[s,(n)]

>

* NSPACE[s;(e(n))] = SPACE[s (e(n))]

21

We show a more general principle,
that any such relation between models
and bounds can be scaled up with a
super linear extension function. The
extension function scales up both
bounds.

This technique is simple yet tricky and
isreferred to as the padding
argument.
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e - Padding argqument
Proof: ———

* For L € NSPACE[s,(e(n))], l s —
Ie.r Le = Ak//‘ #CH'HJ' -y /’\‘:L];l 5 |

* L® € NSPACE[s (n)] < USPFACE|[s;(n)]
M counts |x| and

m #'s to ensure
roper form, then
* 3M’ of s,(n)-DSPACE for L* l:nz:# as

N "‘V\ simulates M and
P Claim 2: 2 cheats* it to *see"

« 3M of s,(e(n))-DSPACE for L “UAI-IXI extra#'s
22

The padding argument goes as follows: —

Givena language L, accepted by a non-
deterministic TM, define the language
Le that comprises all strings inL
padded with the appropriate number
of #.

That padding makes the language L. in
the appropriate non-deterministic
class.

Now, one can apply the containment of
the premise and obtain a determined
TM for Le.

This deterministic TM verifies that
the number of #'s is appropriate with
respect to the size of the “real" input.

One can in turn, given only the real
input, simulate this machine
maintaining a counter of the number
of #'s, and letting the TM work as if
the appropriate number of #'s is
appended to the real input.

Padding argument
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Padding arqument

* For L € NSPACE[s,(e(n))],

- For any 1
functions o ()

|

let Le = {X #pelixi-ixl | )(eL,';l

* L® € NSPACE[s;(n)] < DSPACE[s;(n)]
M counts |X| and

% #'s to ensure .
. form, then
* 3M’ of s,(n)-DSPACE for L® ,:::2:; as

3 -M simulates m and
Ay cheats” it 10 see”

- 3M of s,(e(n))-DSPACE for L “UXD-IX| extra #'s

2

The padding argument goes as follows:
given a language L, accepted by a non-
deterministic TM, define the language
Le that comprises all strings inL
padded with the appropriate number
of #. That padding makes the
language Le in the appropriate non-
deterministic class. Now, one can apply
the containment of the premise and
obtain a determined TM for Le. This
deterministic TM verifies that the
number of #'s is appropriate with
respect o the size of the “real" input.
One can in turn, given only the real
input, simulate this machine
maintaining a counter of the number
of #'s, and letting the TM work as if
the appropriate number of #'s is
appended to the real input.

Padding

[ , _ :

NSPACELs (X L -

Here's an illustration of the
construction:

We start with a TM M” for L, which
can be converted into a TM for Le
(checking that the number of #'s is
appropriatecan be carried out in
LOGSPACE),which by the assumption
of the premise can be made
deferministic --- that's the TM M.

Misa TM for L of appropriate space
that simulates M', and if M’ wonders
off to the # section, it maintains a
pointer (it has enough space to do so)
to where it is and simulates it as if
the #'s are there.

This completes the proof of Savitch's theorem.
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+ Simulation of Non-deterministic
space-bounded computation
does not incur very large
overhead

* What about complementation?
NL vs. coNL

We have just seen that enhancing
space-bounded computation with non
determinism does not make it so much
stronger.

Next, we look at another aspect by
which non determinism for space
bounded computations has a limited
effect.

NON-CONN
N S T ﬁ-
s
+ A directed graph & + Is there no path
and two vertices from = to ?

s, teV

As CONN is NL-Complete

* NON-CONN is coNL-Complete.

What if we prove non-CONN is in NL? |

26

Let us first define the non-
connectivity problem, which is simply
the complement of the connectivity
problem.

Non-connectivity is clearly coNL-
complete, therefore, it represents the
entire coNL class.

It follows, that if we show non-
connectivity isin NL, we've proven
NL=coNL.
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IRaise your hands! |

¥

|Coun'r how many ‘]

To show that non-connectivity isinNL, we can use the witness formulation of NL, where the TM for L
reads a withess of membership from left to write and verifies it indeed proves the input isinL.

el o s Given G let us define the set of
0 Lmmerman/Szelepcsényi: coNL = NL reachable vertexes, namely those that

m can be reached by a directed path

+ Non-CONN e NL Describe an from the start vertex s.

w NL-verifidble - To show there is no path from s to 1,

witness W that we can show that the size of the
(e reachabie(6) = { v | 5V} ypere is no 5 reachable set is the same for 6 and
L Def Jlet 64=(V, E - VH{1} ) v for & only where all edges going into t

[ Witness: ]#ruunhublu((:v) = #reachable(&.,) J are ren‘?V?’d' )

[ — J#mmme«,) = J Hence, it is enough to verify a proof
Suffice showing what is the number of
| Let J"““""b'fn ={ v | sv of length < } | reachable vertexes of a given graph

L Induction: Jr“:#ruauhable‘ Base: ry=1 W#HT# i (first have a proof for G, store that
o number, then verify a proof for the
altered graph, and compare the two
numbers).
To verify that indeed the number of
reachable vertexes is as claimed, the
witness can be constructed inductively
over the length of the path.
There is obviously exactly one vertex
reachable within O steps.
We'll next see how to extend a
witness, proving the number of
reachable vertexes after | steps is Ry,
into a withess for I+1, and so that if
the prefix can be verified by a
LOGSPACE TM then so is the entire
withess.
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v
1

coNL = NI

" E“ﬁo :Eaiii“ﬁ _Eia-

+ Extend an ML~

re

\eom—

able witness W to
g to a withess to "

LN

W%

achabie,

| -
I w, fo;die,u._ abis,,;:

v

-

vl
—_—
‘Wi foriﬁ.-;..;._ |

1

.
-~

re

{ * si of length <i+1

)‘w[v| ' |

achable;,

Z, for je

e

I |

only if j»icc:

) l.ul.lmlnl;‘ Zl
s of length

Verify

| .
reachable, Z|V| ZJ forjz 88C

iable;: empty |
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Wis the witness, proving that the

number of reachable vertexes after |
steps is Ri.

Let us append to it an array of sub-
witnesses, one for each vertex of the
graph: the ith segment would first
specify whether the ith vertex isor is
not reachable within I+1 steps. Next,
depending on that bit (and separated
by $ signs) are the corresponding
withesses. Assuming all sub-witnesses
are true, the verifier can count to see
how many vertexes are reachable
within |+1 steps.

Incase vertex i is reachable within |+1
steps, the witness would simply be a
path from start to vertex i of length
at most |+1.

In case vertex i is not reachable
within |+1 steps, the sub-witness
dedicated for that ith vertex would
itself be an array with every segment
corresponding o a vertex of the
graph. The bit for each vertex |
corresponds to whether vertex j is
reachable within | steps. Clearly, no
vertex j reachable within | steps can
have an edge to vertex i; the witness
for vertex j reachable within | steps,
would be simply a path from start to j
of length at most |.

If vertex j is not reachable within |
steps the jth sub-witness is left
empty.

All sub-witnesses are clearly proving
what they claim, and exist --- except
for the witness that vertex j is not
reachable within | steps.

How then can the verifier be sure
that's true?

The answer is the crux of the entire
argument and is as follows: the NL TM
verifies that the number of vertexes
listed as reachable within | steps is
exactly Ri, the number provenin W to
be the number of reachable vertexes

within | steps!



ik N.D. Algorithm for reach.(v, 1)
reach(v, =
1.length=l;u=s

2. while (length > 0) {
3.ifu=vreturn ‘YES'
4, else, forall (u' € V) {
5. if (u, u’) €E nondeterministic switch:
5.1 u = u’; --length; break
5.2 continue

}
} Takes up logarithmic space
DclBiiTR This N.D. algorithm might never stop
e N.D. Algorithm for CR,
1? count=0
2.forall ueV{
3. county =0

4.forall veV({
5. nondeterministic switch:
5.1if reach(v, d - 1) then ++count,, else fail
if (v,u) = E then ++count; break

5.2 continue _
}

; 6. if count, , < CR, (d-1) fail : v call

T.return count
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N.D. Algorithm far CR

CR,(d,C) Main Algorithm:
1. count =0 CR,
2.forall ueV({ C=1
3. count,, =0 ford=1.JV|
4.forall veV({ C=CR(d, C)
5. nondeterministic switch: return C
5.1if reach(v, d - 1) then ++count,, else fail
if (v,u) = E then ++count; break
5.2 continue
}
6. if count, , <y fail
} iC
T.return count l parameter L

* Space-bounded computation classes

closed under complementation:
vs(n)=log(n):
NSPACE(s(n))=coNSPACE(s(n))

padding argument '

* A basic problem complete for PSPACE

7

33

PSPACE Completeness
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BF

" - 1
-_—x =

+ a fully quantified + Is ¢ true?
Boolean formula ¢ O vxadyval(xv- yvz)A(-xvyll

Ay

* TQBF ePSPACE

* A poly-space algorithm A that evaluates ¢:
if ¢ is quantifier-free return its value
if g=vx.y(x,..) return A(y(0,..))rA(y(1,..))
if 9=3x.y(x,..) return A(y(0,..)jvA(y(1,..))

Algorithm for TQBF

—— ——

(0v-0)1(~0v0) (Ov-l):\(-Dvl) (lv-O):\(-vIVO) (1v=1)a(=1v1)

1 0 0 1

35
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TQRBF is PSPACE-Complete

xR

T . " Q, L/ vmors d . .—
QBF is PSAPCE-hard o ﬁmﬂomtsulb"g

mm“‘u@. v)
ENy oo
* Fora TH M, start with a EF
fransitiong(y, ¥) < ony M moves To Tt
Construct, inductively, the EF
0.4} < onu, M arrives at v in <2¢ steps:
il . 0)= transitiongly, ¥) v u=v
bul . )= SwvyvY
[ (W=uny'=wiv(u'=w v'=v)) ® bl ¥ d-1) ]
* (M, x) = ¢, (startDq], accept, [ightef config.])

Synopsis

N

Defined space-complexity, in particular,
the complexity classes: L, NL, colNP,
PSPACE.

Proved:

Completeness:
ONN for NL; TQBF for PSPACE

avitch's theorem (NLcSPACE(log?))
e padding argument (scaling up)

o
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Space Complexity
Savitch's Theorem
Log Space Reductions
Immerman's Theorem
TQBF

Complexity Classes

L

NL

PSPACE
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