Exercise No. 14: The Dirac Equation

- 1. Show the following relations where $\gamma^0 = \beta$ and $\gamma^i = \beta \alpha_i$:
 - (a) $\gamma^{\mu\dagger} = \gamma^0 \gamma^\mu \gamma^0$,
 - (b) $\gamma^{\mu}\gamma^{\nu}\gamma_{\mu} = -2\gamma^{\nu}$,
 - (c) $\gamma^{\mu}\gamma^{\nu}\gamma^{\lambda}\gamma_{\mu} = 4g^{\nu\lambda}$,
 - (d) $\operatorname{Tr}(\gamma^{\mu}\gamma^{\nu}) = 4g^{\mu\nu},$
 - (e) $(a_{\mu}\gamma^{\mu})(b_{\nu}\gamma^{\nu}) = a_{\mu}b^{\mu} i\sigma^{\mu\nu}a_{\mu}b_{\nu}$, where a_{μ} and b_{μ} are four-vectors.
- 2. Find the transformation properties of the objects bellow under Lorentz transformations:
 - (a) $\bar{\psi}\psi$,
 - (b) $\bar{\psi}\gamma_5\psi$,
 - (c) $\bar{\psi}\gamma^{\mu}\gamma_5\psi$,
 - (d) $\bar{\psi}\sigma^{\mu\nu}\psi$.
- 3. Write the Maxwell equations in the absence of charges and currents in Dirac form in terms of a six-component field amplitude. What are the matrices corresponding to α and β ?