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Nonlinear Dynamics of Nanomechanical Resonators
Ron Lifshitz and M.C. Cross

8.1
Nonlinearities in NEMS and MEMS Resonators

In the last decade we have witnessed exciting technological advances in the fabri-
cation and control of microelectromechanical and nanoelectromechanical systems
(MEMS & NEMS) [16, 19, 26, 54, 55]. Such systems are being developed for a host of
nanotechnological applications, such as highly sensitive mass [25, 34, 67], spin [56],
and charge detectors [17, 18], as well as for basic research in the mesoscopic physics
of phonons [63], and the general study of the behavior of mechanical degrees of
freedom at the interface between the quantum and the classical worlds [5, 64]. Sur-
prisingly, MEMS & NEMS have also opened up a whole new experimental window
into the study of the nonlinear dynamics of discrete systems in the form of nonlin-
ear micromechanical and nanomechanical oscillators and resonators.

The purpose of this review is to provide an introduction to the nonlinear dynam-
ics of micromechanical and nanomechanical resonators that starts from the basics,
but also touches upon some of the advanced topics that are relevant for current ex-
periments with MEMS & NEMS devices. We begin in this section with a general
motivation, explaining why nonlinearities are so often observed in NEMS & MEMS
devices. In Section 8.2 we describe the dynamics of one of the simplest nonlinear
devices, the Duffing resonator, while giving a tutorial in secular perturbation the-
ory as we calculate its response to an external drive. We continue to use the same
analytical tools in Section 8.3 to discuss the dynamics of a parametrically-excited
Duffing resonator, building up to the description of the dynamics of an array of
coupled parametrically-excited Duffing resonators in Section 8.4. We conclude in
Section 8.5 by giving an amplitude equation description for the array of coupled
Duffing resonators, allowing us to extend our analytic capabilities in predicting
and explaining the nature of its dynamics.
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8.1.1
Why Study Nonlinear NEMS and MEMS?

Interest in the nonlinear dynamics of microelectromechanical and nanoelectrome-
chanical systems (MEMS & NEMS) has grown rapidly over the last few years, driv-
en by a combination of practical needs as well as fundamental questions. Nonlinear
behavior is readily observed in micro- and nanoscale mechanical devices [1, 2, 9–
12, 19, 24, 27, 30, 33, 50, 57, 61, 62, 66, 68, 71, 72]. Consequently, there exists a
practical need to understand this behavior in order to avoid it when it is unwanted,
and exploit it efficiently when it is wanted. At the same time, advances in the fab-
rication, transduction, and detection of MEMS & NEMS resonators has opened up
an exciting new experimental window into the study of fundamental questions in
nonlinear dynamics. Typical nonlinear MEMS & NEMS resonators are character-
ized by extremely high frequencies, recently going beyond 1 GHz [15, 32, 48], and
relatively weak dissipation, with quality factors in the range of 102–104. For such
devices the regime of physical interest is that of steady state motion, as transients
tend to disappear before they are detected. This, and the fact that weak dissipation
can be treated as a small perturbation, provide a great advantage for quantitative
theoretical study. Moreover, the ability to fabricate arrays of tens to thousands of
coupled resonators opens new possibilities in the study of nonlinear dynamics of
intermediate numbers of degrees of freedom, much larger than one can study in
macroscopic or tabletop experiments, yet much smaller than one studies when
considering nonlinear aspects of phonon dynamics in a crystal.

The collective response of coupled arrays might be useful for signal enhance-
ment and noise reduction [21, 22], as well as for sophisticated mechanical signal
processing applications. Such arrays have already exhibited interesting nonlinear
dynamics, ranging from the formation of extended patterns [8, 38], as one com-
monly observes in analogous continuous systems such as Faraday waves, to that
of intrinsically localized modes [39, 58–60]. Thus, nanomechanical resonator ar-
rays are perfect for testing dynamical theories of discrete nonlinear systems with
many degrees of freedom. At the same time, the theoretical understanding of such
systems may prove useful for future nanotechnological applications.

8.1.2
Origin of Nonlinearity in NEMS and MEMS Resonators

We are used to thinking about mechanical resonators as being simple harmonic
oscillators, acted upon by linear elastic forces that obey Hooke’s law. This is usually
a very good approximation, as most materials can sustain relatively large deforma-
tions before their intrinsic stress-strain relation breaks away from a simple linear
description. Nevertheless, one commonly encounters nonlinear dynamics in mi-
cromechanical and nanomechanical resonators long before the intrinsic nonlinear
regime is reached. Most evident are nonlinear effects that enter the equation of
motion in the form of a force that is proportional to the cube of the displacement
αx3. These turn a simple harmonic resonator with a linear restoring force into
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a so-called Duffing resonator. The two main origins of the observed nonlinear ef-
fects are illustrated below with the help of two typical examples. These are due to
the effect of external potentials that are often nonlinear, and geometric effects that
introduce nonlinearities even though the individual forces that are involved are all
linear. The Duffing nonlinearity αx3 can be positive, assisting the linear restoring
force, making the resonator stiffer, and increasing its resonance frequency. It can
also be negative, working against the linear restoring force, making the resonator
softer, and decreasing its resonance frequency. The two examples we give below il-
lustrate how both of these situations can arise in realistic MEMS & NEMS devices.

Additional sources of nonlinearity may be found in experimental realizations of
MEMS and NEMS resonators due to practical reasons. These may include non-
linearities in the actuation and in the detection mechanisms that are used for in-
teracting with the resonators. There could also be nonlinearities that result from
the manner in which the resonator is clamped by its boundaries to the surround-
ing material. These all introduce external factors that may contribute to the overall
nonlinear behavior of the resonator.

Finally, nonlinearities often appear in the damping mechanisms that accompany
every physical resonator. We shall avoid going into the detailed description of the
variety of physical processes that govern the damping of a resonator. Suffice it to
say that whenever it is reasonable to expand the forces acting on a resonator up to
the cube of the displacement x3, it should correspondingly be reasonable to add
to the linear damping, which is proportional to the velocity of the resonator Px , a
nonlinear damping term of the form x2 Px , which increases with the amplitude of
motion. Such nonlinear damping will be considered in our analysis below.

8.1.3
Nonlinearities Arising from External Potentials

As an example of the effect of an external potential, let us consider a typical situ-
ation, discussed for example by Cleland and Roukes [17, 18], and depicted in Fig-
ure 8.1, in which a harmonic oscillator is acted upon by an external electrostatic
force. This could be implemented by placing a rigid electrically charged base elec-

Figure 8.1 A 43 nanometer thick doubly-clamped platinum
nanowire with an external electrode that can be used to tune its
natural frequency as well as its nonlinear properties. Adapted
with permission from [33].
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trode near an oppositely charged NEMS or MEMS resonator. If the equilibrium
separation between the resonator and the base electrode in the absence of electric
charge is d, the deviation away from this equilibrium position is denoted by X,
the effective elastic spring constant of the resonator is K, and the charge q on the
resonator is assumed to be constant, then the potential energy of the resonator is
given by

V(X ) D 1
2

K X 2 � C

d C X
. (8.1)

In SI units C D Aq2/4π�0, where A is a numerical factor of order unity that takes
into account the finite dimensions of the charged resonator and base electrode.
The new equilibrium position X0 in the presence of charge can be determined by
solving the cubic equation

dV

dX
D K X C C

(d C X )2
D 0 . (8.2)

If we now expand the potential acting on the resonator in a power series in the
deviation x D X � X0 from this new equilibrium, we obtain

V(x ) ' V(X0) C 1
2

�
K � 2C

(d C X0)3

�
x2 C C

(d C X0)4 x3 � C

(d C X0)5 x4

D V(X0) C 1
2

k x2 C 1
3

�x3 C 1
4

αx4 .

(8.3)

This gives rise, without any additional driving or damping, to an equation of mo-
tion of the form

m Rx C kx C �x2 C αx3 D 0 , with � > 0, α < 0 , (8.4)

where m is the effective mass of the resonator and k is its new effective spring con-
stant, which is softened by the electrostatic attraction to the base electrode. Note
that if 2C/(d C X0)3 > K , the electrostatic force exceeds the elastic restoring force
and the resonator is pulled onto the base electrode. � is a positive symmetry break-
ing quadratic elastic constant that pulls the resonator towards the base electrode
regardless of the sign of x, and α is the cubic, or Duffing, elastic constant that, ow-
ing to its negative sign, softens the effect of the linear restoring force. It should be
sufficient to stop the expansion here, unless the amplitude of the motion is much
larger than the size of the resonator, or if by some coincidence the effects of the
quadratic and cubic nonlinearities happen to cancel each other out, a situation that
will become clearer after reading Section 8.2.3.

8.1.4
Nonlinearities Due to Geometry

As an illustration of how nonlinearities can emerge from linear forces due to ge-
ometric effects, consider a doubly-clamped thin elastic beam, which is one of the
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most commonly encountered NEMS resonators. Because of the clamps at both
ends, as the beam deflects in its transverse motion it necessarily stretches. As long
as the amplitude of the transverse motion is much smaller than the width of the
beam, this effect can be neglected. But with NEMS beams it is often the case that
they are extremely thin, and are driven quite strongly, making it common for the
amplitude of vibration to exceed the width. Let us consider this effect in some
detail by starting with the Euler-Bernoulli equation, which is the commonly used
approximate equation of motion for a thin beam [43]. For a transverse displacement
X(z, t) from equilibrium, which is much smaller than the length L of the beam,
the equation is

�S
@2 X

@t2 D �E I
@4 X

@z4 C T
@2 X

@z2 , (8.5)

where z is the coordinate along the length of the beam � is the mass density, S

is the area of the cross section of the beam, E is the Young’s modulus, I is the
moment of inertia, and T the tension in the beam. The latter is composed of its
inherent tension T0 and the additional tension ∆T due to bending that induces
an extension ∆L in the length of the beam. Inherent tension results from the fact
that in equilibrium in the doubly-clamped configuration, the actual length of the
beam may differ from its rest length, being either extended (positive T0) or com-
pressed (negative T0). The additional tension ∆T is given by the strain, or relative
extension of the beam ∆L/L, multiplied by Young’s modulus E and the area of the
beam’s cross section S. For small displacements, the total length of the beam can
be expanded as

L C ∆L D
Z L

0
dz

s
1 C

�
@X

@z

�2

' L C 1
2

Z L

0
dz

�
@X

@z

�2

. (8.6)

The equation of motion (8.5) then clearly becomes nonlinear

�S
@2 X

@t2 D �E I
@4 X

@z4 C
"

T0 C E S

2L

Z L

0
dz

�
@X

@z

�2
#

@2 X

@z2 . (8.7)

We can treat this equation perturbatively [49, 69]. We first consider the linear
part of the equation, which has the form of (8.5) with T0 in place of T, separate the
variables,

Xn(z, t) D xn(t)φn(z) , (8.8)

and find its spatial eigenmodes φn(z). For the eigenmodes, we use the convention
that the local maximum of the eigenmode φn(z) that is nearest to the center of the
beam is scaled to 1. Thus xn(t) measures the actual deflection of the beam at the
point nearest to its center that extends the furthest. Next, we assume that the beam
is vibrating predominantly in one of these eigenmodes and use this assumption to
evaluate the effective Duffing parameter αn , multiplying the x3

n term in the equa-
tion of motion for this mode. Corrections to this approximation will appear only at
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higher orders of xn . We multiply (8.7) by the chosen eigenmode φn(z) and inte-
grate over z to get, after some integration by parts, a Duffing equation of motion
for the amplitude of the nth mode xn(t),

Rxn C
"

E I

�S

R
φ00

n
2dzR

φ2
n dz

C T0

�S

R
φ0

n
2dzR

φ2
n dz

#
xn C

2
64 E

2�L

�R
φ0

n
2dz

�2

R
φ2

n dz

3
75 x3

n D 0 ,

(8.9)

where primes denote derivatives with respect to z, and all the integrals are from
0 to L. Note that we have obtained a positive Duffing term, indicating a stiffening
nonlinearity, as opposed to the softening nonlinearity that we saw in the previous
section. Also note that the effective spring constant can be made negative by com-
pressing the equilibrium beam, thus making T0 large and negative. This may lead
to the so-called Euler instability, which is a buckling instability of the beam.

To evaluate the effective Duffing nonlinearity αn for the nth mode, we introduce
a dimensionless parameter Oαn by rearranging the equation of motion (8.9) to have
the form

Rxn C ω2
n xn

�
1 C Oαn

x2
n

d2

�
D 0 , (8.10)

where ωn is the normal frequency of the nth mode, d is the width or diameter of
the beam in the direction of the vibration, and xn is the maximum displacement
of the beam near its center. This parameter can then be evaluated regardless of the
actual dimension of the beam.

In the limit of small residual tension T0, the eigenmodes are those dominated
by bending given by [43]

φn(z) D 1
an

[(sin kn L � sinh kn L) (cos kn z � cosh kn z)

� (cos kn L � cosh kn L) (sin kn z � sinh kn z)] , (8.11)

where an is the value of the function in the square brackets at its local maximum
that is closest to z D 0.5, and the wave vectors kn are solutions of the transcenden-
tal equation cos kn L cosh kn L D 1. The first few values are

fkn Lg ' f4.7300, 7.8532, 10.9956, 14.1372, 17.2788, 20.4204 . . .g , (8.12)

and the remaining ones tend towards odd-integer multiples of π/2 as n increases.
Using these eigenfucntions, we can obtain explicit values for the dimensionless
Duffing parameters for the different modes by calculating

Oαn D S d2

2I

� 1
L

R
φ02

n dz
�2

1
L

R
φ00

n
2 dz

� S d2

2I
O�n . (8.13)

The first few values aren O�n

o
' f0.1199, 0.2448, 0.3385, 0.3706, 0.3908, 0.4068, 0.4187, . . .g , (8.14)
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tending to an asymptotic value of 1/2 as n ! 1. For beams with rectangular or
circular cross sections, the geometric prefactor evaluates to

S d2

2I
D

(
16 Circular cross section ,

6 Rectangular cross section .
(8.15)

Thus the dimensionless Duffing parameters are of order 1, and therefore the signif-
icance of the nonlinear behavior is solely determined by the ratio of the deflection
to the width of the beam.

In the limit of large equilibrium tension, the beam essentially behaves as a string
with relatively negligible resistance to bending. The eigenmodes are those of a
string,

φn(z) D sin
� nπ

L
z
�

, n D 1, 2, 3 . . . , (8.16)

and, if we denote the equilibrium extension of the beam as ∆L0 D LT0/E S , the
dimensionless Duffing parameters are exactly given by

Oαn D d2

2∆L0

Z
φ0

n
2 dz D (nπd)2

4L∆L0
. (8.17)

In the large tension limit, as in the case of a string, the dimensionless Duffing
parameters are proportional to the inverse aspect ratio of the beam d/L times the
ratio between its width and the extension from its rest length d/∆L0, at least one of
which can be a very small parameter. For this reason nonlinear effects are relatively
negligible in these systems.

8.2
The Directly-Driven Damped Duffing Resonator

8.2.1
The Scaled Duffing Equation of Motion

Let us begin by considering a single nanomechanical Duffing resonator with linear
and nonlinear damping that is driven by an external sinusoidal force. We shall
start with the common situation where there is symmetry between x and �x, and
consider the changes that are introduced by adding symmetry-breaking terms later.
Such a resonator is described by the equation of motion

m
d2 Qx
d Qt2

C Γ
d Qx
d Qt C mω2

0 Qx C Qα Qx3 C Qη Qx2 d Qx
d Qt D QG cos Qω Qt , (8.18)

where m is its effective mass, k D mω2
0 is its effective spring constant, Qα is the

cubic spring constant or Duffing parameter, Γ is the linear damping rate, and Qη is
the coefficient of nonlinear damping – damping that increases with the amplitude
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of oscillation. We follow the convention that physical parameters that are to be
immediately rescaled appear with twiddles, as the first step in dealing with such an
equation is to scale away as many unnecessary parameters as possible, leaving only
those that are physically significant. This then removes all of the twiddles. We do
so by: (1) Measuring time in units of ω�1

0 so that the dimensionless time variable
is t D ω0 Qt. (2) Measuring amplitudes of motion in units of length for which a
unit-amplitude oscillation doubles the frequency of the resonator. This is achieved

by taking the dimensionless length variable to be x D Qx
q

Qα/mω2
0. For the doubly-

clamped beam of width or diameter d, discussed in Section 8.1.4, this length is
x D Qxp Oαn/d. (3) Dividing the equation by an overall factor of ω3

0

p
m3/ Qα. This

yields a scaled Duffing equation of the form

Rx C Q�1 Px C x C x3 C ηx2 Px D G cos ω t , (8.19)

where dots denote derivatives with respect to the dimensionless time t, all the di-
mensionless parameters are related to the physical ones by

Q�1 D Γ
mω0

, η D Qηω0

Qα , G D
QG

ω3
0

r Qα
m3 , and ω D Qω

ω0
, (8.20)

and Q is the quality factor of the resonator.

8.2.2
A Solution Using Secular Perturbation Theory

We proceed to calculate the response of the damped Duffing resonator to an ex-
ternal sinusoidal drive, as given by (8.19), by making use of secular perturbation
theory [31, 65]. We do so in the limit of a weak linear damping rate Q�1, which
we use to define a small expansion parameter, Q�1 � � � 1. In most actual ap-
plications, Q is at least on the order of 100, making this limit well-justified. We
also consider the limit of weak oscillations where it is justified to truncate the ex-
pansion of the force acting on the resonator at the third power of x. We do so by
requiring that the cubic force x3 be a factor of � smaller than the linear force, or
equivalently, by requiring the deviation from equilibrium x to be on the order ofp

�. We ensure that the external driving force has the right strength to induce such
weak oscillations by having it enter the equation at the same order as all the other
physical effects. This, in effect, requires the amplitude of the drive to be G D �3/2g.
To see why, recall that for a regular linear resonance, x is proportional to G Q. Q is
of order ��1 and we want x to be of order

p
�, and so G must be of order �3/2. Final-

ly, since damping is weak we expect to see a response only close to the resonance
frequency. We therefore take the driving frequency to be of the form ω D 1 C �Ω .
The equation of motion (8.19) thus becomes

Rx C � Px C x C x3 C ηx2 Px D �3/2g cos(1 C �Ω )t . (8.21)

This is the equation we shall study using secular perturbation theory, while occa-
sionally comparing the results with the original physical equation (8.18).
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With the expectation that the motion of the resonator far from equilibrium will
be on the order of �1/2, we try a solution of the form

x (t) D
p

�

2

�
A(T ) eit C c.c.

� C �3/2x1(t) C . . . (8.22)

where c.c. denotes complex conjunction.
The lowest order contribution to this solution is based on the solution to the lin-

ear equation of motion of a simple harmonic oscillator (SHO) Rx C x D 0, where
T D � t is a slow time variable, allowing the complex amplitude A(T ) to vary slowly
in time due to the effect of all the other terms in the equation. As we shall im-
mediately see, the slow temporal variation of A(T ) also allows us to ensure that
the perturbative correction x1(t) as well as all higher-order corrections to the linear
equation do not diverge, as they do if one uses naive perturbation theory. Using the
relation

PA D dA

dt
D �

dA

dT
� �A0 , (8.23)

we calculate the time derivatives of the trial solution (8.22)

Px D
p

�

2

�	
iA C �A0



eit C c.c.

� C �3/2 Px1(t) C . . . (8.24a)

Rx D
p

�

2

�	�A C 2 i�A0 C �2A00



eit C c.c.
� C �3/2 Rx1(t) C . . . (8.24b)

By substituting these expressions back into the equation of motion (8.21) and pick-
ing out all terms of order �3/2, we get for the first perturbative correction

Rx1 Cx1 D
�

�iA0 � i
1
2

A � 3 C iη
8

jAj2A C g

2
eiΩ T

�
eit � 1 C iη

8
A3 e3it Cc.c.

(8.25)

The collection of terms proportional to eit on the right-hand side of (8.25), called
the secular terms, act like a force that drives the SHO on the left-hand side exactly
at its resonance frequency. The sum of all these terms must therefore vanish so that
the perturbative correction x1(t) will not diverge. This requirement is the so-called
“solvability condition”, giving us an equation for determining the slowly varying
amplitude A(T ),

dA

dT
D � 1

2
A C i

3
8

jAj2A � η
8

jAj2A � i
g

2
eiΩ T . (8.26)

This general equation could be used to study many different effects [20]. Here we
use it to study the steady-state dynamics of the driven Duffing resonator.

We ignore initial transients and assume that there exists a steady-state solution
of the form

A(T ) D a eiΩ T � jaj eiφ eiΩ T . (8.27)
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With this expression for the slowly varying amplitude A(T ), the solution to the
original equation of motion (8.21) becomes an oscillation at the drive frequency
ω D 1 C �Ω ,

x (t) D �1/2jaj cos(ω t C φ) C O(�3/2) , (8.28)

where we are not interested in the actual correction x1(t) of order �3/2, but rather
in finding the fixed complex amplitude a of the lowest order term. This amplitude
a can be any solution of the equation��

3
4

jaj2 � 2Ω
�

C i
�

1 C η
4

jaj2
��

a D g , (8.29)

obtained by substituting the steady-state solution (8.27) into Eq. (8.26) of the secular
terms.

The magnitude and phase of the response are then given explicitly by

jaj2 D g2�
2Ω � 3

4 jaj2�2 C �
1 C 1

4 ηjaj2�2 (8.30a)

and

tan φ D 1 C 1
4 ηjaj2

2Ω � 3
4 jaj2 . (8.30b)

By reintroducing the original physical scales, we can obtain the physical solution to
the original equations of motion Qx ( Qt) ' Qx0 cos( Qω Qt C φ), where Qx0 D jajpΓω0/ Qα,
and therefore

Qx2
0 D

�
QG

2mω2
0

�2

�
Qω�ω0

ω0
� 3

8
Qα

mω2
0

Qx2
0

�2 C
�

1
2 Q�1 C 1

8
Qη

mω0
Qx2

0

�2 (8.31a)

and

tan φ D
Γ
2 C Qη

8 Qx2
0

m Qω � mω0 � 3 Qα
8ω0

Qx2
0

. (8.31b)

The scaled response functions (8.30a) are plotted in Figure 8.2 for a drive with
a scaled amplitude of g D 3, both with and without nonlinear damping. The re-
sponse without nonlinear damping is shown also in Figure 8.3 for a sequence of
increasing drive amplitudes ranging from g D 0.1, where the response is essen-
tially linear, to the value of g D 4. Note that due to our choice of a positive Duffing
nonlinearity, the resonator becomes stiffer and its frequency higher as the ampli-
tude increases. The response amplitude of the driven resonator therefore increas-
es with increasing frequency until it reaches a saddle-node bifurcation and drops
abruptly to zero. A negative Duffing parameter would produce a mirror image of
this response curve.
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Figure 8.2 Magnitude jaj (a) and phase φ
(b) of the response of a Duffing resonator as
a function of the frequency Ω for a fixed driv-
ing amplitude g D 3. The thin solid curves
show the response without any nonlinear
damping (η D 0). The thick dotted curves
show the response with nonlinear damping

(η D 0.1). The thin dotted curve in (a) shows
the response without any kind of damping
(Q�1 D 0 and η D 0 in the original equa-
tion (8.19)). The phase in this case is 0 along
the whole upper-left branch and π along the
whole lower-right branch, and so is not plot-
ted in (b).
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Figure 8.3 Magnitudes jaj (a) and phases φ (b) of the re-
sponse of a Duffing resonator as a function of the frequen-
cy Ω for a sequence of increasing values of the drive ampli-
tude 0.1 � g � 4.0, without nonlinear damping (η D 0).
Solid curves indicate stable solutions of the response func-
tion (8.30a), while dashed curves indicate unstable solutions.

One sees that the magnitude of the response given by (8.30a) formally approach-
es the Lorentzian response of a linear SHO if we let the nonlinear terms in the
original equation of motion tend to zero. Their existence modifies the response
function with the appearance of the squared magnitude jaj2 in the denominator
on the right-hand side of (8.30a), turning the solution into a cubic polynomial in
jaj2. As such there are either one or three real solutions for jaj2, and therefore for
jaj, as a function of either the drive amplitude g or the driving frequency Ω . We
shall analyze the dependence of the magnitude of the response on frequency in
some detail, and leave it to the reader to perform such an analysis of the similar
dependence on drive amplitude.
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In order to analyze the magnitude of the response jaj as a function of driving
frequency Ω , we differentiate the response function (8.30a), resulting in	 3

64

�
9 C η2� jaj4 C 1

4 (η � 6Ω ) jaj2 C 1
4 C Ω 2
 djaj2

D 	 3
4 jaj4 � 2Ω jaj2
 dΩ . (8.32)

This allows us immediately to find the condition for resonance, where the mag-
nitude of the response is at its peak, by requiring that djaj2/dΩ D 0. We find
that the resonance frequency Ωmax depends quadratically on the peak magnitude
jajmax, according to

Ωmax D 3
8 jaj2max , (8.33a)

or in terms of the original variables as

Qωmax D ω0 C 3
8

α
mω0

( Qx0)2
max . (8.33b)

The curve satisfying (8.33a), for which jaj D p
8Ω /3, is plotted in Figure 8.3. It

forms a square root backbone that connects all the resonance peaks for the differ-
ent driving amplitudes, which is often seen in typical experiments with nanome-
chanical resonators. Thus, the peak of the response is pulled further toward higher
frequencies as the driving amplitude g is increased, as expected from a stiffening
nonlinearity.

When the drive amplitude g is sufficiently strong, we can use Eq. (8.32) to find
the two saddle-node bifurcation points, where the number of solutions changes
from one to three and then back from three to one. At these points dΩ /djaj2 D 0,
yielding a quadratic equation in Ω whose solutions are

Ω ˙
SN D 3

4 jaj2 ˙ 1
2

q
3
16 (3 � η2) jaj4 � ηjaj2 � 1 . (8.34)

When the two solutions are real, corresponding to the two bifurcation points, a
linear stability analysis shows that the upper and lower branches of the response
are stable solutions and the middle branch that exists for Ω �

SN < Ω < Ω C
SN is

unstable. When the drive amplitude g is reduced, it approaches a critical value gc

where the two bifurcation points merge into an inflection point. At this point both
dΩ /djaj2 D 0 and d2Ω /(djaj2)2 D 0, providing two equations for determining the
critical condition for the onset of bistability, or the existence of two stable solution
branches,

jaj2c D 8
3

1p
3 � η

, Ωc D 1

2
p

3

3
p

3 C ηp
3 � η

, gc
2 D 32

27
9 C η2�p

3 � η
�3 . (8.35)

For the case without nonlinear damping, η D 0, the critical values are jaj2c D
(4/3)3/2 and Ωc D (3/4)1/2, for which the critical drive amplitude is gc D (4/3)5/4.
For 0 < η <

p
3, the critical driving amplitude gc that is required for having

bistability increases with η, as shown in Figure 8.4. For η >
p

3 the discriminant
in Eq. (8.34) is always negative, prohibiting the existence of bistability of solutions.
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Figure 8.4 Critical driving amplitude gc for the onset of bista-
bility in the response of the Duffing resonator as a function
of nonlinear damping η, as given by Eq. (8.35). Note that
gc ! (4/3)5/4 ' 1.43 as η ! 0.
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Figure 8.5 Responsivity jaj/g of the Duffing resonator without
nonlinear damping (a) and with a small amount of nonlinear
damping η D 0.1 (b), for different values of the driving am-
plitude g. Viewing the response in this way suggests an experi-
mental scheme by which one could determine the importance
of nonlinear damping and extract its magnitude.

Nonlinear damping acts to decrease the magnitude of the response when it is
appreciable, that is, when the drive amplitude is large. It gives rise to an effective
damping rate for oscillations with magnitude jaj that is given by 1 C 1

4 ηjaj2, or,
in terms of the physical parameters, by Γ C 1

4 Qη Qx2
0 . When viewing the response

as it is plotted in Figure 8.3, it is difficult to distinguish between the effects of the
two forms of damping. The resonance peaks lie on the same backbone regardless of
the existence of a contribution from nonlinear damping. A more useful scheme for
seeing the effect of nonlinear damping is to plot the response amplitude scaled by
the drive jaj/g, often called the responsivity of the resonator, as shown in Figure 8.5.
Without nonlinear damping all peaks have the same height of 1. With nonlinear
damping, one clearly sees the decrease in the responsivity as the driving amplitude
is increased.

The region of bistability that lies between the two saddle-node bifurcations (8.34)
in the response of the driven Duffing resonator is the source of a number of in-
teresting dynamical features that are often observed in experiments with MEMS
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& NEMS resonators [3, 19, 28, 70]. Most obvious is the existence of hysteresis in
quasistatic sweeps of either driving frequency or driving amplitude, which is read-
ily observed in experiments. For example, if we start below resonance and sweep
the frequency upwards along one of the constant drive amplitude curves shown in
Figure 8.3, the response will gradually increase, climbing up on the curve until it
reaches the upper saddle-node bifurcation Ω C

SN(g). It will then abruptly drop down
to the lower stable solution branch and continue toward lower response ampli-
tudes to the right of the resonance. Upon switching the direction of the quasistatic
sweep, the response amplitude will gradually increase until it reaches the lower
saddle-node bifurcation Ω �

SN(g), where it will abruptly jump up to the upper sta-
ble solution branch. From this point it will gradually follow it downwards towards
lower frequencies with diminishing response amplitude.

Another interesting aspect involves basins of attraction. If we fix the values of
the driving amplitude and frequency, the driven damped Duffing resonator will
deterministically approach one of the two possible solutions, depending on its ini-
tial conditions. One can then map the regions of the phase space of initial condi-
tions into the two so-called basins of attraction of the two possible stable solutions,
where the unstable solution lies along the separatrix, or border line between the
two basins of attraction. These basins of attraction were mapped out in a recent
experiment using a suspended platinum nanowire by Kozinsky et al. [41]. If one
additionally considers the existence of random noise, which is always the case in
real systems, then the separatrix becomes fuzzy and it is possible to observe ther-
mally activated switching of the resonator between its two possible solutions. What
is in fact observed, for example in an upward frequency scan, is that the resonator
can drop to the small amplitude solution before it actually reaches the upper saddle-
node bifurcation Ω C

SN(g). Similar behavior is also observed for the lower bifurcation
point. As the noise increases, the observed size of the bistability region effectively
shrinks. This was demonstrated with a doubly-clamped nanomechanical resonator
made of aluminum nitride in a recent experiment by Aldridge and Clelend [1].
The existence of the saddle-node bifurcation has also been exploited for applica-
tions because the response of the resonator at the bifurcation point can change
dramatically if one changes the drive frequency, or any of the resonator’s physical
parameters that can alter the response curve. This idea has been used for signal
amplification [10] as well as squeezing of noise [3, 69].

Finally, much effort has been recently invested to push experiments with
nanomechanical resonators towards the quantum regime. In this context, it has
been shown that the bistability region in the response of the driven damped Duff-
ing resonator offers a novel approach for observing the transition from classical
to quantum mechanical behavior as the temperature is lowered [36, 37]. The es-
sential idea is that one can find a regime in frequency and temperature where
thermal switching between the two basins of attraction is essentially suppressed
when the dynamics is classical, whereas if the resonator has already started enter-
ing the quantum regime, quantum dynamics allow it to switch between the two
basins. Thus, an observation of switching can be used to ascertain whether or not
a Duffing resonator is behaving quantum mechanically.
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8.2.3
Addition of Other Nonlinear Terms

It is worth considering the addition of other nonlinear terms that were not includ-
ed in our original equation of motion (8.18). Without increasing the order of the
nonlinearity, we could still add quadratic symmetry breaking terms of the form x2,
x Px , and Px2 as well as additional cubic damping terms of the form Px3 and x Px2.
Such terms may appear naturally in actual physical situations, like the examples
discussed in Section 8.1.2. For the reader who wishes to skip to the following sec-
tion on parametrically-driven Duffing resonators, we state at the outset that the
addition of such terms does not alter the response curves that we described in the
previous section in any fundamental way. They merely conspire to renormalize the
effective values of the coefficients used in the original equation of motion. Thus,
without any particular model at hand, it is difficult to discern the existence of such
terms in the equation.

Consider an equation like (8.18), but with additional terms of the form given
above,

m
d2 Qx
d Qt2

C Γ
d Qx
d Qt C mω2

0 Qx C Q� Qx2 C Qµ Qx d Qx
d Qt C Q�

�
d Qx
d Qt

�2

C Qα Qx3 C Qη Qx2 d Qx
dQt

C Qν Qx
�

d Qx
d Qt

�2

C Q	
�

d Qx
d Qt

�3

D QG cos Qω Qt , (8.36)

and then perform the same scaling as in (8.20) for the additional parameters, pro-
ducing

� D
Q�

ω0
p

m Qα , µ D Qµp
m Qα , � D Q�ω0p

m Qα , ν D Qνω2
0

Qα , 	 D
Q	 ω3

0

Qα .

(8.37)

After performing the same scaling as before with the small parameter � D Q�1,
this yields a scaled equation of motion with all the additional nonlinearities,

Rx C� Px C x C �x2 C µx Px C� Px2 C x3 C ηx2 Px C νx Px2 C 	 Px3 D �3/2g cos ω t .

(8.38)

The important difference between this equation and the one we solved earlier (8.21)
is that with a similar scaling of x with

p
�, we now have terms on the order of �. We

therefore need to modify our trial expansion to contain such terms as well, yielding

x (t) D p
�x0(t, T ) C �x1/2(t, T ) C �3/2x1(t, T ) C . . . , (8.39)

with x0 D 1
2

	
A(T ) eit C c.c.



as before.

We begin by collecting all terms on the order of �, arriving at

Rx1/2 C x1/2 D � 1
2 (� C �) jAj2 � 1

4

	
(� � � C iµ) A2 e2it C c.c.



. (8.40)
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This equation for the first correction x1/2(t) contains no secular terms, and there-
fore can be solved immediately to give

x1/2(t) D � 1
2 (� C �) jAj2 C 1

12

	
(� � � C iµ) A2 e2it C c.c.



. (8.41)

We substitute this solution into the ansatz (8.39) and back into the equation of mo-
tion (8.38), and proceed by collecting terms on the order of �3/2. We find a number
of additional terms of this order that did not appear earlier on the right-hand side
of (8.25) for the correction x1(t),

� 2�x0x1/2 � µ
�
x0 Px1/2 C Px0x1/2

� � 2� Px0 Px1/2 � νx0 Px2
0 � 	 Px3

0

D ˚	 5
12 � (� C �) C 1

6 �2 C 1
24 µ2 � 1

8 ν

 C i

	 1
8 µ (� C �) � 3

8 	

�jAj2A eit

C nonsecular terms .

(8.42)

After adding the additional secular terms, we obtain a modified equation for the
slowly varying amplitude A(T ),

dA

dT
D � 1

2
A C i

3
8

�
1 � 10

9
� (� C �) � 4

9
�2 � 1

9
µ2 C 1

3
ν
�

jAj2A

� 1
8

(η � µ (� C �) C 3	 ) jAj2A � i
g

2
eiΩ T

� � 1
2

A C i
3
8

αeffjAj2A � 1
8

ηeffjAj2A � i
g

2
eiΩ T . (8.43)

We find that the equation is formally identical to the previous result (8.26) before
adding the extra nonlinear terms. The response curves and the discussion of the
previous section therefore still apply after taking into account all of the quadratic
and cubic nonlinear terms. All of these terms combine in a particular way, giving
rise to the two effective cubic parameters defined in (8.43). This, in fact, allows one
some flexibility in tuning the nonlinearities of a Duffing resonator in real experi-
mental situations. For example, Kozinsky et al. [40] use this flexibility to tune the
effective Duffing parameter αeff via an external electrostatic potential, as described
in Section 8.1.3 and shown in Figure 8.1. This affects both the quadratic parameter
Q� and the cubic parameter Qα in the physical equation of motion (8.36). Note that
due to the different signs of the various contributions to the effective nonlinear pa-
rameters, one could actually cause the cubic terms to vanish, altering the response
in a fundamental way.

8.3
Parametric Excitation of a Damped Duffing Resonator

Parametric excitation offers an alternative approach for actuating MEMS or NEMS
resonators. Instead of applying an external force that acts directly on the resonator,
one modulates one or more of its physical parameters as a function of time, which
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in turn modulates the normal frequency of the resonator. This is what happens
on a swing when the up-and-down motion of the center of mass of the swinging
child effectively changes the length of the swing, thereby modulating its natural
frequency. The most effective way to swing is to move the center of mass up and
down twice in every period of oscillation, but one can also swing by moving up
and down at slower rates, namely once every nth multiple of half a period, for any
integer n.

Let H be the relative amplitude by which the normal frequency is modulated, and
ωP be the frequency of the modulation, often called the pump frequency. One can
show [42] that there is a sequence of tongue shaped regions in the H � ωP plane
where the smallest fluctuations away from the quiescent state of the swing, or any
other parametrically-excited resonator [66], are exponentially amplified. This hap-
pens when the amplitude of the modulation H is sufficiently strong to overcome
the effect of damping, where the threshold for the nth instability tongue scales as
(Q�1)1/n . Above this threshold, the amplitude of the motion grows until it is sat-
urated by nonlinear effects. We shall describe the nature of these oscillations for
driving above threshold later, both for the first (n D 1) and the second (n D 2)
instability tongues, but first we shall consider the dynamics when the driving am-
plitude is just below threshold, as it also offers interesting behavior and a possi-
bility for novel applications such as parametric amplification [4, 12, 57] and noise
squeezing [57].

There are a number of actual schemes for the realization of parametric excita-
tion in MEMS & NEMS devices. The simplest and probably most commonly used
on the micron scale is to use an external electrode that can induce an external po-
tential. If the external potential is modulated in time it can change the effective
spring constant of the resonator [24, 51, 52, 66, 71, 72]. Based on our treatment of
this situation in Section 8.1.3, this method is likely to modulate all the coefficients
in the potential felt by the resonator, thus also modulating, for example, the Duff-
ing parameter α. Similarly, one may devise configurations in which an external
electrode deflects a doubly-clamped beam from its equilibrium, thereby inducing
extra tension within the beam itself that can be modulated in time, as described
in Section 8.1.4. Alternatively, one may generate motion in the clamps holding a
doubly-clamped beam by its ends, thus inducing in it a time-varying tension which
is likely to affect the other physical parameters to a lesser extent. An example of this
method is shown in Figure 8.6. These methods allow one to modulate the tension
in the beam directly and thus modulate its normal frequency. More recently, Mas-
manidis et al. [45] developed layered piezoelectric NEMS structures whose tension
can be fine tuned in doubly-clamped configurations, thus enabling fine control of
the normal frequency of the beam with a simple turn of a knob.

Only a minor change is required in our equation of the driven damped Duffing
resonator to accommodate this new situation, namely the addition of a modula-
tion of the linear spring constant. Beginning with the scaled form of the Duffing
equation (8.19), we obtain

Rx C Q�1 Px C [1 C H cos ωP t] x C x3 C ηx2 Px D G cos
�
ωD t C φ g

�
, (8.44)
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Figure 8.6 A configuration that uses elec-
tromotive actuation to perform parametric
excitation of a doubly-clamped beam, the cen-
tral segment of the H-shaped device. A static
magnetic field runs normal to the plane of the
device. A metallic wire that runs along the ex-
ternal suspended segments of the H-device
carries alternating current in opposite direc-
tions, thus applying opposite Lorentz forces

that induce a time-varying compression of the
central segment. This modulates the tension
in the central segment, thus varying its nor-
mal frequency. This configuration was recently
used by Karabalin et al. [35] to demonstrate
parametric amplification of a signal running
along the central beam through a separate
electric circuit. Image courtesy of Michael
Roukes.

where the scaling is the same as before, and we shall again use the damping Q�1

to define the small expansion parameter �. The term proportional to H on the left
hand side is the external drive that modulates the spring constant, giving a term
that is proportional to the displacement x as well as to the strength of the drive.
This term is the parametric drive.

We first consider the largest excitation effect that occurs when the pump fre-
quency is close to twice the resonant frequency of the resonator. This is the region
in the H � ωP plane that we termed the first instability tongue. We therefore take
the pump frequency to be an amount �ΩP away from twice the resonant frequen-
cy, and take the drive amplitude to scale as the damping, that is, we set H D �h.
The term on the right hand side is a direct additive drive or signal, with amplitude
scaled as in the discussion of the Duffing equation. The frequency of the drive is
an amount εΩD away from the resonator frequency that has been scaled to 1.

The scaled equation of motion that we now treat in detail is therefore

Rx C � Px C (1 C �h cos [(2 C �ΩP) t]) x C x3 C ηx2 Px
D �3/2jgj cos

	
(1 C �ωD ) t C φ g



, (8.45)

where we now use g D jgje i φg to denote a complex drive amplitude.
We follow the same scheme of secular perturbation theory as in Section 8.2.2, us-

ing a trial solution in the form of (8.22) and proceeding as before. The new secular
term, appearing on the right-hand side of (8.25) and arising from the parametric
drive is

� 1
4 hA� eiΩP T eit . (8.46)

This gives the equation for the slowly varying amplitude,

dA

dT
C 1

2
A � i

h

4
A� eiΩP T � i

3
8

jAj2A C η
8

jAj2A D �i
g

2
eiΩD T . (8.47)
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8.3.1
Driving Below Threshold: Amplification and Noise Squeezing

We first study the amplitude of the response of a parametrically-pumped Duffing
resonator to an external direct drive g ¤ 0. We will see that the characteristic be-
havior changes from amplification of an applied signal to oscillations at a critical
value of h D hc D 2, even in the absence of a signal. It is therefore convenient
to introduce a reduced parametric drive Nh D h/ hc D h/2 that plays the role of
a bifurcation parameter with a critical value of 1. We begin by assuming that the
drive is small enough so that the magnitude of the response remains small and the
nonlinear terms in (8.47) can be neglected. This gives the linear equation

dA

dT
C 1

2
A � i

Nh
2

A� eiΩP T D �i
g

2
eiΩD T . (8.48)

In general, at long times after transients have died out, the solution will take the
form

A D a0 eiΩD T C b0 ei(ΩP�ΩD)T , (8.49)

where a0 and b0 are complex constants.
We first consider the degenerate case where the pump frequency is tuned such

that it is always twice the signal frequency. In this case ΩP D 2ΩD, and the long
time solution is

A D a eiΩD T (8.50)

with a a time independent complex amplitude. Substituting this into (8.48) gives

(2ΩD � i)a � Nha� D �g . (8.51)

Equation (8.51) is easily solved. If we first look on resonance, ΩD D 0, we find

a D eiπ/4

"
cos(φg C π/4)

(1 � Nh)
C i

sin(φg C π/4)

(1 C Nh)

#
jgj , (8.52)

where we remind the reader that g D jgj eiφg so that φg measures the phase of the
signal relative to the pump. Equation (8.52) shows that on resonance and for Nh ! 1
(or h ! hc D 2), the strongest enhancement of the response occurs for a signal that
has a phase �π/4 relative to the pump. Physically, this means that the maximum
of the signal occurs a quarter of a pump cycle after a maximum of the pump. (The
phase 3π/4 gives the same result: this corresponds to shifting the oscillations by
a complete pump period.) The enhancement diverges as Nh ! 1, provided that the
signal amplitude g is small enough that the enhanced response remains within the
linear regime. For a fixed signal amplitude g, the response will become large as
Nh ! 1, so that the nonlinear terms in (8.47) must be retained and the expressions
we have derived no longer hold. This situation is discussed in the next section.
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On the other hand, there is a weak suppression, by a factor of 2 as Nh ! 1, for
a signal that has a relative phase π/4 or 5π/4. The latter pertains to the case of a
signal maximum that occurs a quarter of a pump cycle before a maximum of the
pump. A noise signal on the right-hand side of the equation of motion (8.45) would
have both phase components. This leads to the squeezing of the noisy displacement
driven by this noise, with the response at phase �π/4 amplified and the response
at phase π/4 quenched.

The full expression for ΩD ¤ 0 for the response amplitude is

a D �
"

2ΩD C (i C Nh e�2 iφg )

4Ω 2
D C (1 � Nh2)

#
g . (8.53)

For Nh ! 1 the response is large when ΩD � 1, that is, for frequencies much closer
to resonance than the original width of the resonator response. In these limits the
first term in the numerator may be neglected unless φg ' π/4. This then gives

jaj D 2
ˇ̌
g cos(φg C π/4)

ˇ̌
4Ω 2

D C (1 � Nh2)
. (8.54)

This is not the same as the expression for a resonant response, since the frequency
dependence of the amplitude, not amplitude squared, is Lorentzian. However, es-
timating a quality factor from the width of the sharp peak would give an enhanced

quality factor / 1/
p

1 � Nh2, becoming very large as Nh ! 1. For the case φg D π/4
the magnitude of the response is

ˇ̌
aφgDπ/4

ˇ̌ D
q

4Ω 2
D C (1 � Nh)2

4Ω 2
D C (1 � Nh2)

jNgj . (8.55)

This initially increases as the frequency approaches resonance, but decreases for

ΩD .
p

1 � Nh, approaching jgj /2 for ΩD ! 0, Nh ! 1.
For the general or nondegenerate case of ΩP ¤ 2ΩD, it is straightforward to

repeat the calculation with the ansatz (8.49). The result is

a0 D � 2(ΩP � ΩD) C i

4ΩD(ΩP � ΩD) � 2i(ΩP � 2ΩD) C 1 � Nh2
g . (8.56)

Notice that this does not reduce to (8.53) for ΩP D 2ΩD, since we miss some of the
interference terms in the degenerate case if we base the calculation on ΩP ¤ 2ΩD.
Also, of course, there is no dependence of the magnitude of the response on the
phase of the signal φg, since for different frequencies the phase difference cannot
be defined independent of an arbitrary choice of the origin of time. If the pump
frequency is maintained fixed at twice the resonator resonance frequency, corre-
sponding to ΩP D 0, the expression for the amplitude of the response simplifies
to

a0 D 2ΩD � i

�4Ω 2
D C 4 iΩD C 1 � Nh2

g . (8.57)
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Figure 8.7 Response of the parametrically
driven resonator as the signal frequency ΩD
varies for a pump frequency equal to twice the
signal frequency (a), and for the pump fre-
quency fixed at the linear resonance frequency
(b), given by (8.53) and (8.57), respectively.
The dashed curve is the response of the res-

onator to the same signal without parametric
drive. In (a) the upper curve is for the ampli-
fied phase φg D �π/4, and the lower curve
for the phase φg D π/4, giving squeezing on
resonance. In both cases the reduced pump
amplitude Nh D h/ hc is 0.95.

Again, there is an enhanced response for drive frequencies closer to resonance
than the width of the original resonator response. In this region ΩD � 1, so that

ˇ̌
a0

ˇ̌ ' jgj 1q
(4ΩD)2 C (1 � Nh2)2

. (8.58)

This is the usual Lorentzian describing a resonance with a quality factor enhanced
by (1 � Nh2)�1, as shown in Figure 8.7(b).

For the resonance condition ΩD D ΩP D 0, corresponding to both a pump
frequency that is twice the resonance frequency of the device, and to a signal at this
resonant frequency, the response amplitude in the linear approximation diverges
as the pump amplitude approaches the critical value hc D 2. This is the signature
of a linear instability to self sustained oscillations in the absence of any drive. We
analyze this parametric instability in the next section.

8.3.2
Linear Instability

The divergence of the response as Nh approaches unity from below corresponding
to h ! 2 suggests a linear instability for h > 2, or QH > 2 in the original units.
We can see this directly from (8.47) by setting g D 0 but still ignoring the nonlinear
terms, yielding the linear equation

dA

dT
C 1

2
A D i

h

4
A� eiΩP T . (8.59)

We seek a solution of the form

A D jaj eiφ eσT ei(ΩP/2)T (8.60)
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/

Figure 8.8 The first instability tongue of the
parametrically-driven Duffing resonator, the
threshold for instability, plotted in the (ΩP, h)
plane. The lower, long-dashed curve shows
the threshold without any linear damping
(Γ D 0), which is zero on resonance. The
upper curve shows the threshold with linear
damping (Γ ¤ 0). The threshold on reso-

nance (ΩP D 0) is h D 2. The solid and
short-dashed regions of the upper curve indi-
cate the so-called subcritical and supercritical
branches of the instability, respectively, as
discussed in Section 8.3.4. On the subcritical
branch (ΩP > 4η/3) there will be hysteresis
as h is varied, and on the supercritical branch
(ΩP < 4η/3) there will not be any hysteresis.

with a real σ giving exponential growth or decay. Substituting into (8.59) gives

σ D
�1 ˙

q
(h/2)2 � Ω 2

P

2
, (8.61)

φ D ˙
�

π
4

� 1
2

arcsin
�

2ΩP

h

��
(8.62)

where we take the value of arcsin between 0 and π/2, and the plus and minus signs
in the two equations correspond directly to one another. Note that these expressions
apply for h/2 > ΩP; for h/2 < ΩP, the value of σ is complex. For pumping at twice
the resonance frequency ΩP D 0, one phase of oscillation φ D π

4 has a reduced

damping, with σ D �(1/2 � h/4) for h < 2, and an instability σ D (h/4 � 1/2) > 0
signaling exponential growth for h > 2. The other phase of oscillation φ D � π

4 has
an increased damping, with σ D �(1/2 C h/4). The general condition for instability
is

h > 2
q

1 C Ω 2
P , (8.63)

showing an increase of the threshold for nonzero frequency detuning ΩP, as shown
in Figure 8.8. The linear instability that occurs for positive σ gives exponentially
growing solutions that eventually saturate due to nonlinearity.

8.3.3
Nonlinear Behavior Near Threshold

Nonlinear effects may also be important below the threshold of the parametric in-
stability in the presence of a periodic signal or noise. As we have seen, in the linear
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approximation the gain below threshold diverges as h ! hc. This is unphysical,
and for a given signal or noise strength there is some h close enough to hc where
nonlinear saturation of the gain will become important. This will give a smooth be-
havior of the response of the driven system as h passes through hc into the unstable
regime. We first analyze the effects of nonlinearity near the threshold of the insta-
bility, and calculate the smooth behavior as h passes through hc in the presence of
an applied signal. In the following section we study the effects of nonlinearity on
the self-sustained oscillations above threshold with more generality.

We take h to be close to hc, and we take the signal to be small. This introduces
a second level of “smallness”. We have already assumed that the damping and the
deviation of the pump frequency from resonance are both small. This means that
the critical parametric drive Hc is also small. We now assume that jH �Hcj is small
compared with Hc, or, equivalently in scaled units, that jh � hcj is small compared
with hc. We then introduce the perturbation parameter δ to implement this, that
is, we assume that

δ D h � hc

hc
� 1 . (8.64)

We now use the same type of secular perturbation theory as the method leading
to (8.47) to develop the expansion in δ. For simplicity we will develop the theory for
the most interesting case of resonant pump and signal frequencies ΩP D ΩD D 0.
The critical value of h is then hc D 2, and the solution to (8.47) that becomes
marginally stable at this value is

A D b eiπ/4 , (8.65)

with b a real constant.
For h near hc we make the ansatz for the solution

A D δ1/2b0(τ) eiπ/4 C δ3/2b1(τ) C � � � , (8.66)

where b0 is a real function of τ D δT . The latter is a new and even slower time
scale that determines the time variation of the real amplitude b0 near threshold.
We must also assume that the signal amplitude is very small, that is, g D δ3/2 Og, in
total yielding G D (�δ)3/2 Og. Substituting (8.66) into (8.47) and collecting terms at
O(δ3/2) yields

1
2

(b1 � b�
1 ) D � Og

2
eiπ/4 � db0

dτ
C 1

2
b0 C i

3
8

b3
0 � η

8
b3

0 . (8.67)

The left-hand side of this equation is necessarily imaginary, so in order to have
a solution for b1 such that the perturbation expansion is valid, the real part of
the right-hand side must be zero. This is the solvability condition for the secular
perturbation theory. This gives

db0

dτ
D 1

2
b0 � η

8
b3

0 � j Ogj
2

cos(φg C π/4) . (8.68)
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It is more informative to write this equation in terms of the the variables without
the δ scaling. Introducing the “unscaled” amplitude b D δ1/2b0 and generaliz-
ing (8.65) such that

A D b eiπ/4 C O(δ3/2) , (8.69)

we can write the equation as

db

dT
D 1

2
h � hc

hc
b � η

8
b3 � jgj

2
cos(φg C π/4) . (8.70)

Equation (8.70) can be used to investigate many phenomena, such as transients
above threshold, and how the amplitude of the response to a signal varies as h pass-
es through the instability threshold. The unphysical divergence of the response to
a small signal as h ! hc from below is now eliminated. For example, exactly at
threshold h D hc we have

jbj D
�

4
η

ˇ̌
g cos(φg C π/4)

ˇ̌�1/3

, (8.71)

giving a finite response, but one proportional to jgj1/3 rather than to jgj. The gain
jb/gj scales as jgj�2/3 for h D hc, and gets smaller as the signal gets larger, as
shown in Figure 8.9. Note that the physical origin of the saturation at the lowest
order of perturbation theory is nonlinear damping. Without nonlinear damping
the response amplitude (8.71) still diverges. With linear damping that is still small,
one would need to go to higher orders of perturbation theory to find a different
physical mechanism that can provide this kind of saturation. The response to noise
can also be investigated by replacing the jgj cos(φg Cπ/4) drive by a noise function.
Equation (8.70) and the noisy version appear in many contexts of phase transitions
and bifurcations, and so solutions are readily found in the literature [20].
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Figure 8.9 Saturation of the response b (a) and gain
ˇ̌
b/g

ˇ̌
(b)

as the parametric drive h passes through the critical value hc,
for four different signal levels g. The signal levels are

p
η/4

times 10�2.5, 10�3, 10�3.5, and 10�4, increasing upwards for
the response figure, and downwards for the gain figure. The
response amplitude is also measured in units of

p
η/4. The

phase of the signal is φg D �π/4.
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8.3.4
Nonlinear Saturation above Threshold

The linear instability leads to exponential growth of the amplitude, regardless of
the signal, and results in its saturation. In order to understand this process, we
need to return to the full nonlinear treatment of (8.47) with g D 0. Ignoring initial
transients and assuming that the nonlinear terms in the equation are sufficient to
saturate the growth of the instability, we try a steady-state solution of the form

A(T ) D aei
�

ΩP
2

�
T . (8.72)

This amplitude a can be any solution of the equation��
3
4

jaj2 � ΩP

�
C i

�
1 C η

4
jaj2

��
a D � h

2
a� , (8.73)

obtained by substituting the steady-state solution (8.72) into the equation of the sec-
ular terms (8.47). We immediately see that having no response (a D 0) is always a
possible solution regardless of the excitation frequency ΩP. Expressing a D jaj eiφ

and taking the magnitude squared of both sides, we obtain the intensity jaj2 of the
nontrivial response as all positive roots of the equation�

ΩP � 3
4

jaj2
�2

C
�

1 C η
4

jaj2
�2 D h2

4
. (8.74)

In addition to the solution jaj D 0, we have a quadratic equation for jaj2 and
therefore, at most, two additional positive solutions for jaj. This has the form of
a distorted ellipse in the (ΩP, jaj2) plane and a parabola in the (jaj2, h) plane. In
addition, we obtain for the relative phase of the response

φ D i
2

ln
a�

a
D � 1

2
arctan

1 C η
4 jaj2

3
4 jaj2 � ΩP

. (8.75)

In Figure 8.10 we plot the response intensity jaj2 of a Duffing resonator to para-
metric excitation as a function of the pump frequency ΩP for a fixed scaled drive
amplitude h D 3. Solid curves indicate stable solutions, and dashed curves are
solutions that are unstable to small perturbations. Thin curves show the response
without nonlinear damping (η D 0), which grows indefinitely with frequency ΩP

and is therefore incompatible with experimental observations [8, 66, 71] as well as
the assumptions of our calculation. As we saw for the saturation below threshold,
without nonlinear damping and with linear damping being small, one would have
to go to higher orders of perturbation theory to search for a physical mechanism
that could provide saturation. For large linear damping, or small Q, one sees satu-
ration even without nonlinear damping [47]. Thick curves in Figure 8.10 show the
response with finite nonlinear damping (η D 1). With finite η there is a maximum
value for the response jaj2max D 2(h � 2)/η, and a maximum frequency

ΩSN D h

2

s
1 C

�
3
η

�2

� 3
η

, (8.76)
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Figure 8.10 Response intensity jaj2 as a function of the pump
frequency ΩP, for fixed amplitude h D 3. Solid curves are stable
solutions; dashed curves are unstable solutions. Thin curves
show the response without nonlinear damping (η D 0). Thick
curves show the response for finite nonlinear damping (η D 1).
Dotted lines indicate the maximal response intensity jaj2max and
the saddle-node frequency ΩSN.

at a saddle-node bifurcation, where the stable and unstable nontrivial solutions
meet. For frequencies above ΩSN the only solution is the trivial one, a D 0. These
values are indicated by horizontal and vertical dotted lines in Figure 8.10.

The threshold for the instability of the trivial solution is easily verified by setting
a D 0 in the expression (8.74) for the nontrivial solution, or by inverting the expres-
sion (8.63) for the instability that we obtained in the previous section. As seen in
Figure 8.10, for a given h the threshold is situated at ΩP D ˙p

(h/2)2 � 1. This is
the same result calculated in the previous section, where we plotted the threshold
tongue in Figure 8.8 in the (h, ΩP) plane. Figure 8.10 is a horizontal cut through
that tongue at a constant drive amplitude h D 3.

Like the response of a forced Duffing resonator shown in (8.29), the response
of a parametrically excited Duffing resonator also exhibits hysteresis in quasistatic
frequency scans. If the frequency ΩP begins at negative values and is increased
gradually with a fixed amplitude h, the zero response will become unstable as the
lower threshold is crossed at �p

(h/2)2 � 1. After this occurs the response will
gradually increase along the thick solid curve in Figure 8.10, until ΩP reaches ΩSN

and the response drops abruptly to zero. If the frequency is then decreased gradu-
ally, the response will remain zero until ΩP reaches the upper instability threshold
Cp

(h/2)2 � 1. The response will then jump abruptly to the thick solid curve above,
and afterwards gradually decrease to zero along this curve.

Finally, in Figure 8.11 we plot the response intensity jaj2 of the Duffing resonator
as a function of drive amplitude h, for fixed frequency ΩP and finite nonlinear
damping η D 1. This would correspond to performing a vertical cut through the in-
stability tongue Figure 8.8. Again, solid curves indicate stable solutions and dashed
curves indicate unstable solutions. Thick curves show the response for ΩP D 1, and
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Figure 8.11 Response intensity jaj2 as a function of the para-
metric drive amplitude h for fixed frequency ΩP and finite non-
linear damping (η D 1). Thick curves show the stable (solid
curves) and unstable (dashed curves) response for ΩP D 1.
Thin curves show the stable solutions for ΩP D η/3 and
ΩP D �1, and demonstrate that hysteresis as h is varied is
expected only for ΩP > η/3.

thin curves show the response for ΩP D η/3 and ΩP D �1. The intersection of
the trivial and the nontrivial solutions, which corresponds to the instability thresh-
old (8.63), occurs at h D 2

p
ΩP

2 C 1. For ΩP < η/3, the nontrivial solution for
jaj2 grows continuously for h above threshold and is stable. This is a supercritical
bifurcation. On the other hand, for ΩP > η/3 the bifurcation is subcritical and the
nontrivial solution grows for h below threshold. This solution is unstable until the
curve of jaj2 as a function of h turns at a saddle-node bifurcation at

hSN D 2 C 2η
3 ΩPq

1 C � η
3

�2
, (8.77)

where the solution becomes stable and jaj2 is once more an increasing function
of h. For amplitudes h < hSN the only solution is the trivial one a D 0. Hysteretic
behavior is therefore expected for quasistatic scans of the drive amplitude h only if
the fixed frequency ΩP > η/3, as can be inferred from Figure 8.11.

8.3.5
Parametric Excitation at the Second Instability Tongue

We wish to examine the second tongue by looking at the response above threshold
and highlighting the main changes from the first tongue. This tongue, it should
be noted, is readily accessible in experiments because the pump and the response
frequencies are the same. We start with the general equation for a parametrically-
driven Duffing resonator (8.44), but with no direct drive (g D 0), where the para-
metric excitation is performed around 1 instead of 2. Correspondingly, the scaling
of H with respect to � needs to be changed to H D h

p
�. The reason for this change
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is that with the H D h� scaling, the order �1/2 term in x becomes identically zero.
This occurs because the parametric driving term does not contribute to the order
�3/2 secular term which we use to find the response. Scaling H in the appropriate
manner will introduce a nonsecular correction to x at order �, and this correction
will contribute to the order �3/2 secular term and will give us the required response.
The equation of motion then becomes

Rx C x D � h�1/2

2

�
ei(tCΩPT ) C c.c.

�
x � � Px � x3 � ηx2 Px , (8.78)

and we try an expansion of the solution of the form

x (t) D �1/2 1
2

�
A(T ) eit C c.c.

� C �x1/2(t) C �3/2x1(t) C . . . (8.79)

Substituting this expansion into the equation of motion (8.78), we obtain at order
�1/2 the linear equation as usual, and at order �

Rx1/2 C x1/2 D � h

4

�
A eiΩPT e2it C A� eiΩP T C c.c.

�
. (8.80)

As expected, there is no secular term on the right-hand side so we can immediately
solve for x1/2, yielding

x1/2(t) D h

4

�
A

3
eiΩP T e2 it � A� eiΩP T C c.c.

�
C O(�) . (8.81)

Substituting the solution for x1/2 into the expansion (8.79), and the expansion back
into the equation of motion (8.78), contributes an additional term from the para-
metric driving which has the form

�3/2 h2

8

�
� A

3
eiΩP T e2 it C A� eiΩP T C c.c.

� �
eiΩP T eit C c.c.

�
D �3/2 h2

8

�
2
3

A C A� ei2ΩP T

�
eit C c.c. C nonsecular terms . (8.82)

This gives us the required contribution to the equation for the vanishing secular
terms. All other terms remain as they were in (8.47), so that the new equation for
determining A(T ) becomes

dA

dT
C i

h2

8

�
2
3

A C A� ei2ΩP T

�
C 1

2
A � i

3
8

jAj2A C η
8

jAj2A D 0 . (8.83)

Again, ignoring initial transients and assuming that the nonlinear terms in the
equation are sufficient to saturate the growth of the instability, we try a steady-state
solution, this time of the form

A(T ) D a eiΩP T . (8.84)

The solution to the equation of motion (8.78) is therefore

x (t) D �1/2(a ei(1C�ΩP)t C c.c.) C O(�) , (8.85)
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where the correction x1/2 of order � is given in (8.81) and, as before, we are not
interested in the correction x1(t) of order �3/2, but rather in the fixed amplitude
a of the lowest order term. We substitute the steady-state solution (8.84) into the
equation of the secular terms (8.83) and obtain��

3
4

jaj2 � 2ΩP � h2

6

�
C i

�
1 C η

4
jaj2

��
a D h2

4
a� . (8.86)

By taking the magnitude squared of both sides we obtain, in addition to the trivial
solution a D 0, a nontrivial response given by�

3
4

jaj2 � 2ΩP � 1
6

h2
�2

C
�

1 C η
4

jaj2
�2 D h4

16
. (8.87)

Figure 8.12 shows the response intensity jaj2 as a function of the frequency ΩP

for a fixed drive amplitude of h D 3, producing a horizontal cut through the sec-
ond instability tongue. The solution looks very similar to the response shown in
Figure 8.10 for the first instability tongue, though we should point out two im-
portant differences. The first is that the orientation of the ellipse, indicated by the
slope of the curves for η D 0, is different. The slope here is 8/3, whereas for the
first instability tongue the slope is 4/3. The second is the change in the scaling of
h with �, or the inverse quality factor Q�1. The lowest critical drive amplitude for
an instability at the second tongue is again on resonance (ΩP D 0), and its value is
again h D 2. This now implies, however, that H

p
Q D 2, or that H scales as the

square root of the linear damping rate Γ . This is consistent with the well known
result that the minimal amplitude for the instability of the nth tongue scales as
Γ 1/n (for example, see [42], Section 3).
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Figure 8.12 Response intensity jaj2 of a parametrically-driven
Duffing resonator as a function of the pump frequency ΩP, for
a fixed amplitude h D 3 in the second instability tongue. Solid
curves are stable solutions and dashed curves are unstable
solutions. Thin curves show the response without nonlinear
damping (η D 0). Thick curves show the response for finite
nonlinear damping (η D 1).
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8.4
Parametric Excitation of Arrays of Coupled Duffing Resonators

The last two sections of this review describe theoretical work that was motivated
directly by the experimental work of Buks and Roukes [8]. They fabricated an ar-
ray of nonlinear micromechanical doubly-clamped gold beams, and excited them
parametrically by modulating the strength of an externally controlled electrostat-
ic coupling between neighboring beams. The Buks and Roukes experiment was
modeled by Lifshitz and Cross [44] (henceforth LC) using a set of coupled nonlin-
ear equations of motion. The latter used secular perturbation theory, as we have
described so far for a system with just a single degree of freedom, to convert these
equations of motion into a set of coupled nonlinear algebraic equations for the nor-
mal mode amplitudes of the system. This enabled them to obtain exact results for
small arrays, but only a qualitative understanding of the dynamics of large arrays.
We shall review these results in this section.

In order to obtain analytical results for large arrays, Bromberg, Cross, and Lif-
shitz [7] (henceforth BCL) studied the same system of equations, approaching it
from the continuous limit of infinitely many degrees of freedom. They obtained
a description of the slow spatiotemporal dynamics of the array of resonators in
terms of an amplitude equation. BCL showed that this amplitude equation could
predict the initial mode that develops at the onset of parametric oscillations as the
driving amplitude is gradually increased from zero, as well as a sequence of sub-
sequent transitions to other single mode oscillations. We shall review these results
in Section 8.5. Kenig, Lifshitz, and Cross [38] have extended the investigation of
the amplitude equation to more general questions such as how patterns are se-
lected when many patterns or solutions are simultaneously stable. This extension
includes other experimentally relevant questions, such as the response of the sys-
tem of coupled resonators to time dependent sweeps of the control parameters,
rather than quasistatic sweeps like the ones we have been discussing here. Kenig
et al. [39] have also studied the formation and dynamics of intrinsically-localized
modes, or solitons, in the array equations of LC. To this end, they derived a differ-
ent amplitude equation, which takes the form of a parametrically-driven damped
nonlinear Shrödinger equation, also known as a forced complex Ginzburg-Landau
equation. We shall not review these last two papers here, but encourage the reader
to pursue them independently.

8.4.1
Modeling an Array of Coupled Duffing Resonators

LC modeled the array of coupled nonlinear resonators that was studied by Buks
and Roukes using a set of coupled equations of motion (EOM) of the form

Ru n C u n C u3
n � 1

2 Q�1( Pu nC1 � 2 Pu n C Pu n�1)

C 1
2

�
D C H cos ωp t

�
(u nC1 � 2u n C u n�1)

� 1
2 η

	
(u nC1 � u n)2( Pu nC1 � Pu n) � (u n � u n�1)2( Pu n � Pu n�1)


 D 0 ,

(8.88)
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where u n(t) describes the deviation of the nth resonator from its equilibrium, with
n D 1 . . . N , and fixed boundary conditions u0 D u NC1 D 0. Detailed argu-
ments for the choice of terms introduced into the equations of motion are dis-
cussed in [44]. The terms include an elastic restoring force with both linear and
cubic contributions, whose coefficients are both scaled to 1 as in our discussion of
the single degree of freedom. They also include a dc electrostatic nearest neighbor
coupling term with a small ac component responsible for the parametric excita-
tion, with coefficients D and H, respectively, and linear as well as cubic nonlinear
dissipation terms. Both dissipation terms are assumed to depend on the difference
of the displacements of nearest neighbors.

We consider here a slightly simpler and more general model for an array of
coupled resonators in order to illustrate the approach. Motivated by the geome-
try of most experimental NEMS systems, we assume a line of identical resonators
although the generalization to two or three dimensions is straightforward. The
simplest model is to take the equation of motion of each resonator to be as that
in (8.44), with the addition of a coupling term to its two neighbors. A simple choice
would be to assume that this coupling does not introduce additional dissipation,
which we describe as reactive coupling. Elastic and electrostatic coupling might be
predominantly of this type. After the usual scaling, the equations of motions would
take the form

Ru n C Q�1 Pu n C u3
n C (1 C H cos ωP t)u n C ηu2

n Pu n

C 1
2 D(u nC1 � 2u n C u n�1) D 0 , (8.89)

where we do not take into account any direct drive for the purposes of the present
section.

The equations of motion for particular experimental implementations might
have different terms, although we expect all will have linear and nonlinear damp-
ing, linear coupling, and parametric drive. For example, to model the experimental
setup of Buks and Roukes [8], LC supposed that both linear and nonlinear dissipa-
tion terms involved the difference of neighboring displacements, that is, the terms
involving Pu n in our equations of motion (8.89) are replaced with terms involving
u nC1 � u n in the equations of motion (8.88) used by LC. This was to describe the
physics of electric current damping, with the currents driven by the varying ca-
pacitance between neighboring resonators depending on the change in separation
and the fixed DC voltage. This effect seemed to be the dominant component of the
dissipation in the Buks and Roukes experiments. Similarly, the parametric drive
H cos ωP t multiplied (u nC1 � 2u n C u n�1) in the equations of LC rather than u n

here, since the voltage between adjacent resonators was the quantity modulated,
changing the electrostatic component of the spring constant.

In a more recent implementation [45], the electric current damping has been
reduced, and the parametric drive is directly applied to each resonator piezoelectri-
cally, so that the simpler form of (8.89) applies. The method of attack is the same
in any case. We will illustrate the approach on the simpler equation, and refer
the reader to LC for the more complicated model. An additional complication in
a realistic model may be that the coupling is longer range than nearest neighbor.
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For example, both electrostatic coupling and elastic coupling through the supports
would have longer range components. The general method is the same for these
additional effects, and the reader should be able to apply the approach to the model
for their particular experimental implementation.

8.4.2
Calculating the Response of an Array

We calculate the response of the array to parametric excitation, again using secular
perturbation theory. We suppose Q is large and take � D Q�1 as the small expan-
sion parameter. As in Section 8.3 we take H D �h, but we also take D D �d so
that the width of the frequency band of eigenmodes is also small. This is not quite
how LC treated the coupling, but we think the present approach is clearer, and it
is equivalent up to the order of the expansion in � that we require. We thank Eyal
Kenig for pointing out this simplification.

The equations of motion are now

Ru n C � Pu n C u3
n C �

1 C �h cos
	
(2 C �ΩP)t


�
u n C ηu2

n Pu n

C 1
2 �d(u nC1 � 2u n C u n�1) D 0 , n D 1 . . . N . (8.90)

We expand u n(t) as a sum of standing wave modes with slowly varying amplitudes.
The nature of the standing wave modes will depend on the conditions at the end of
the line of resonators. In the experiments of Buks and Roukes there were N mobile
beams, with a number of identical immobilized beams at each end. These condi-
tions can be implemented in a nearest neighbor model by taking two additional
resonators, u0 and u NC1 and assuming

u0 D u NC1 D 0 . (8.91)

The standing wave modes are then

u n D sin(nqm) with qm D mπ
N C 1

, m D 1 . . . N . (8.92)

On the other hand, for a line of N resonators with free ends there is no force from
outside the line. For the nearest neighbor model this can be imposed again by
taking two additional resonators, but now with the conditions

u0 D u1 and u N D u NC1 . (8.93)

The standing wave modes are now

u n D cos
��

n � 1
2

�
qm

�
with qm D mπ

N
, m D 0 . . . N � 1 . (8.94)

For our illustration we will take (8.91), (8.92). Thus we write

u n(t) D �1/2 1
2

NX
mD1

�
A m(T ) sin(nqm) eit C c.c.

� C �3/2u
(1)
n (t) C . . . ,

n D 1 . . . N , (8.95)

with qm as in (8.92).
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We substitute the trial solution (8.95) into the EOM term by term. Up to order
�3/2 we have

Ru n D �1/2 1
2

X
m

sin(nqm)
�	�A m C 2 i�A0

m



eit C c.c.

� C �3/2 Ru(1)
n (t) C . . . ,

(8.96a)

� Pu n D �3/2 1
2

X
m

sin(nqm)
�
iA m eit C c.c.

� C . . . , (8.96b)

1
2

�d(u nC1 � 2u n C u n�1)

D ��3/2 d

2

X
m

2 sin2
� qm

2

�
sin(nqm)

�
A m eit C c.c.

� C . . . (8.96c)

u3
n D �3/2 1

8

X
j,k ,l

sin(nq j ) sin(nqk) sin(nql)

� �
A j eit C c.c.

� �
A k eit C c.c.

� �
A l eit C c.c.

�
D �3/2 1

32

X
j,k ,l

˚
sin[n(�q j C qk C q l)] C sin[n(q j � qk C q l )]

C sin
	
n(q j C qk � q l)


 � sin
	
n(q j C qk C q l)


�
� ˚

A j A k A l e3 it C 3A j A k A�
l eit C c.c.

�
, (8.96d)

and

ηu n
2 Pu n D �3/2 η

32

X
j,k ,l

˚
sin[n(�q j C qk C q l)] C sin[n(q j � qk C q l)]

C sin[n(q j C qk � q l)] � sin[n(q j C qk C q l)]
�

� �
A j eit C c.c.

� �
A k eit C c.c.

� �
iA l eit C c.c.

�
.

(8.96e)

The order �1/2 terms cancel, and at order �3/2 we get N equations of the form

Ru(1)
n C u

(1)
n D

X
m

(mth secular term) eit C other terms , (8.97)

where the left-hand sides are uncoupled linear harmonic oscillators, with a fre-
quency unity. On the right-hand sides we have N secular terms which act to drive
the oscillators u

(1)
n at their resonance frequencies. As we did for all the single res-

onator examples, here, too, we require that all the secular terms vanish so that
the u

(1)
n remain finite. Thus, we obtain equations for the slowly varying amplitudes

A m(T ). To extract the equation for the mth amplitude A m(T ) we make use of the
orthogonality of the modes, multiplying all the terms by sin(nqm) and summing
over n. We find that the coefficient of the mth secular term, which is required to
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vanish, is given by

�2 i
dA m

dT
� iA mC2d sin2

� qm

2

�
A m � 1

2
hA�

m eiΩP T

� 3 C iη
16

X
j,k ,l

A j A k A�
l ∆(1)

j k lIm D 0 , (8.98)

where we have used the ∆ function introduced by LC, defined in terms of Kroneck-
er deltas as

∆(1)
j k lIm

D δ� j CkCl,m � δ� j CkCl,�m � δ� j CkCl,2(NC1)�m

C δ j �kCl,m � δ j �kCl,�m � δ j �kCl,2(NC1)�m

C δ j Ck�l,m � δ j Ck�l,�m � δ j Ck�l,2(NC1)�m

� δ j CkCl,m C δ j CkCl,2(NC1)�m � δ j CkCl,2(NC1)Cm , (8.99)

and have exploited the fact that it is invariant under any permutation of the indices
j, k, and l. The function ∆(2)

j k lIm
, also defined by LC, is not needed for our simpli-

fied model. The ∆ function ensures the conservation of lattice momentum. In this
case, momentum is conserved to within the non-uniqueness of the specification
of the normal modes due to the fact that sin(nqm) D sin(nq2k(NC1)˙m) for any
integer k. The first Kronecker delta in each line is a condition of direct momentum
conservation, and the other two are the so-called umklapp conditions where only
lattice momentum is conserved.

As for the single resonator, we again try a steady-state solution, this time of the
form

A m(T ) D am ei
�

ΩP
2

�
T , (8.100)

so that the solutions to the EOM, after substitution of (8.100) into (8.95), become

u n(t) D �1/2 1
2

X
m

�
am sin(nqm) ei

�
1C

�ΩP
2

�
t C c.c.

�
C O(�3/2) , (8.101)

where all modes are oscillating at half the parametric excitation frequency.
Substituting the steady state solution (8.100) into the equations (8.98) for the

time-varying amplitudes A m(T ), we obtain the equations for the time-independent
complex amplitudes, am

h
ΩP C 2d sin2

� qm

2

�
� i

i
am � h

2
a�

m � 3 C iη
16

X
j,k ,l

a j ak a�
l ∆(1)

j k lIm
D 0 .

(8.102)

Note that the first two terms on the left-hand side indicate that the linear resonance
frequency is not obtained for ΩP D 0, but rather for ΩP C 2d sin2 (qm/2) D 0. In
terms of the unscaled parameters, this implies that the resonance frequency of the
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mth mode is ωm D 1� D sin2 (qm/2), which is the same as the expected dispersion
relation

ω2
m D 1 � 2D sin2

� qm

2

�
(8.103)

to within a correction of O(�2).
Equation 8.102 is the main result of the calculation. We have managed to replace

N coupled differential equations (8.89) for the resonator coordinates u n(t) by N

coupled algebraic equations (8.102) for the time-independent mode amplitudes am .
All that remains, in order to obtain the overall collective response of the array as a
function of the parameters of the original EOM, is to solve these coupled algebraic
equations.

First, one can easily verify that for a single resonator (N D j D k D l D m D 1),
the general equation (8.102) reduces to the single resonator equation (8.73) that we
derived in Section 8.3.4 due to the fact that ∆111I1 D 4. Next, one can see that the
trivial solution, am D 0 for all m, always satisfies the equations, though it is not
always a stable solution, as we have seen in the case of a single resonator. Finally,
one can also verify that a single mode solution exists with am ¤ 0 and a j D 0
for all j ¤ m whenever, for any given m, ∆(1)

mmmI j D 0 for all j ¤ m. These
single mode solutions have the same type of elliptical shape of the single resonator
solution given in (8.74). Note that generically ∆(1)

mmmIm D 3, except when umklapp
conditions are satisfied.

In general, additional solutions involving more than a single mode exist, but are
hard to obtain analytically. LC calculated these multimode solutions for the case of
two and three resonators for the model they considered by finding the roots of the
coupled algebraic equations numerically. We show some of their results to illus-
trate the type of behavior that occurs, although the precise details will be slightly
different.

8.4.3
The Response of Very Small Arrays and Comparison of Analytics and Numerics

In Figure 8.13 we show the solutions for the response intensity of two resonators
as a function of frequency for a particular choice of the equation parameters. Fig-
ure 8.13a shows the square of the amplitude of the antisymmetric mode a2, where-
as Figure 8.13b shows the square of the amplitude of the symmetric mode a1. Solid
curves indicate stable solutions and dashed curves indicate unstable solutions. Two
elliptical single mode solution branches, similar to the response of the single res-
onator shown in Figure 8.10 are easily identified. These branches are labeled by S1

and S2. LC give the analytical expressions for these two solution branches. In ad-
dition, there are two double mode solution branches, labeled D1 and D2, involving
the simultaneous excitation of both modes. Note that the two branches of double
mode solutions intersect at a point where they switch their stability.

With two resonators there are regions in frequency where three stable solutions
can exist. If all of the stable solution branches are accessible experimentally then
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Figure 8.13 Two resonators. (a,b) Response
intensity as a function of frequency ΩP for a
particular choice of the equation parameters.
(a) shows ja2j2 and (b) shows ja1j2. Solid
curves indicate stable solutions and dashed
curves indicate unstable solutions. The two
elliptical single mode solution branches are
labeled S1 and S2. The two double mode
solution branches are labeled D1 and D2.

(c) Comparison of stable solutions obtained
analytically (small circles), with a numerical
integration of the equations of motion show-
ing hysteresis in the response (solid curve –
frequency swept up; dashed curve – frequency
swept down). The averaged response intensity
as defined in (8.104) is plotted. Branch labels
correspond to those on the left.

the observed effects of hysteresis might be more complex than in the simple case
of a single resonator. This is demonstrated in Figure 8.13c, where the analytical
solutions are compared with a numerical integration of the differential equations
of motion (8.88) for two resonators. The response intensity plotted here is given by
the time and space averages of the square of the resonator displacements

I D 1
N

NX
nD1

˝
u2

n

˛
, (8.104)

where the angular brackets denote time average and N D 2. A solid curve shows
the response intensity for frequency swept upwards, and a dashed curve shows the
response intensity for frequency swept downwards.

Small circles show the analytical response intensity for the stable regions of the
four solution branches shown in Figure 8.13. With the analytical solution in the
background, one can easily understand the discontinuous jumps and hysteresis
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effects that are obtained in the numerical solution of the equations of motion. Note
that the S1 branch is missed in the upwards frequency sweep and is only accessed
by the system in the downwards frequency sweep. One could trace the whole stable
region of the S1 branch by changing the sweep direction after jumping onto the
branch. This would result in climbing all the way up to the end of the S1 branch
and then falling onto the tip of the D1 branch or to zero. These kinds of changes
in the direction of the sweep that occur when one jumps onto a new branch are
essential if one wants to trace out as much of the solution as possible. This holds
for both real experiments or numerical simulations.

8.4.4
Response of Large Arrays and Numerical Simulation

LC integrated the equations of motion (8.88) numerically for an array of N D 67
resonators. The results for the response intensity as a function of the unscaled
parametric drive frequency ωp as given in (8.104) are shown in Figure 8.14. These
results must be considered illustrative only, because the structure of the response
branches will vary with changes to the model, and will also depend strongly on
the chosen equation parameters. First of all, as in the case of a small number of
beams, the overall height and width of individual response branches depend on the
strength of the drive h and on the nonlinear dissipation coefficient η. Furthermore,
if the coupling strength D is increased, for example, such that the width of the
frequency response band becomes much larger than N times the width of a single
mode response, then very few, if any, multimode solutions exist.

A number of the important features of the response should be highlighted. We
concentrate on the solid curve in the figure, which is for frequency swept upwards.
First, the response intensity shows features that span a range of frequencies that is
large compared with the mode spacing, which is about 0.0006 for the parameters
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Figure 8.14 Response intensity as a function of the driving
frequency ωp for N D 67 parametrically-driven resonators
(solid curve – frequency swept up; dashed curve – frequency
swept down). The response intensity is defined in (8.104). The
response curve was obtained through numerical integration of
the equations of motion (8.88).
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used. The reason for this is that we skip over many others as we follow a particular
solution, as has been seen for the S1 branch in the two resonator case. Second,
the variation of the response with frequency shows abrupt jumps as the frequency
is raised, particularly on the high frequency side of the features. This happens as
we reach saddle-node or other types of bifurcations where we lose the stability of
the solution branch, or the branch ends altogether. Third, the response extends to
frequencies higher than the band edge for the linear modes, which would give a
response only up to ωp D 2.0. This happens simply due to the positive Duffing
parameter which causes frequency pulling to the right. Note that the downwards
sweep is able to access additional stable solution branches that were missed in the
upwards sweep. There is also no response above ωp D 2.0 in this case. This is be-
cause the zero displacement state is stable for ωp > 2.0, and the system will remain
in this state as the frequency is lowered unless a large enough disturbance kicks it
onto another of the solution branches. The hysteresis on reversing the frequency
sweep was not examined in any experiment, and it would be interesting to test this
prediction of LC in the future.

8.5
Amplitude Equation Description for Large Arrays

We finish this review by describing the approach used by BCL [6, 7] to obtain an-
alytical results for large arrays by approaching them from the continuous limit of
infinitely many degrees of freedom. We only summarize the main results of BCL
and encourage the reader, who by now has all the required background, to refer
to BCL [7] and to Kenig et al. [38] for details of the derivation and for thorough
discussions of the results and their experimental consequences. We note that BCL
studied the original system of (8.88), where both the parametric excitation and the
damping are introduced in terms of the difference variables u nC1 � u n . We stick
to this model here, and leave it to the reader as an exercise to generalize the BCL
derivation for the more general model equations (8.89) that we used in the previous
section.

A novel feature of the parametrically-driven instability is that the bifurcation to
standing waves switches from supercritical (continuous) to subcritical (discontinu-
ous) at a wave number at or close to the critical one, for which the required para-
metric driving force is minimum. This changes the form of the amplitude equation
that describes the onset of the parametrically-driven waves so that it no longer has
the standard “Ginzburg–Landau” form [20]. The central result of BCL is this new
scaled amplitude equation (8.112), which is governed by a single control parame-
ter and captures the slow dynamics of the coupled resonators just above the onset
of parametric oscillations, including this unusual bifurcation behavior. BCL con-
firmed the behavior numerically and made suggestions for testing it experimen-
tally. Kenig et al. [38] have extended the investigation of the amplitude equation
to include such situations as time-dependent ramps of the drive amplitude, as op-
posed to the standard quasistatic sweeps of the control parameters. Although our
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focus here is on parametrically-driven NEMS & MEMS resonators, we should em-
phasize that the amplitude equation of BCL that we describe here should also apply
to other parametrically-driven wave systems with weak nonlinear damping.

8.5.1
Amplitude Equations for Counter Propagating Waves

BCL scaled the equations of motion (8.88), as did Lifshitz and Cross [44], without
assuming a priori that the coupling D is small. Thus, the scaled equations of mo-
tion that they solved were

Ru n C u n C u3
n � 1

2 �( Pu nC1 � 2 Pu n C Pu n�1)

C 1
2

	
D C �h cos(2ω p t)



(u nC1 � 2u n C u n�1)

� 1
2 η

	
(u nC1 � u n)2( Pu nC1 � Pu n) � (u n � u n�1)2( Pu n � Pu n�1)


 D 0 .

(8.105)

Note the way in which the pump frequency is specified as 2ωp in the argument of
the cosine term, with an explicit factor of two (unlike what we did in Section 8.4),
and also without making any assumptions at this point regarding its deviation from
twice the resonance. We also remind the reader that this and all other frequencies
are measured in terms of the natural frequency of a single resonator, which has
been scaled to 1. The first step in treating this system of equations analytically is to
introduce a continuous displacement field u(x , t), and slow spatial and temporal
scales X D �x and T D � t. One then tries a solution in terms of a pair of counter-
propagating plane waves at half the pump frequency, which is a natural first guess
in continuous parametrically-driven systems such as Faraday waves [20]. This yields

u(x , t) D �1/2 	�
AC(X , T ) e�iqp x C A�

�(X , T ) eiqp x
�

eiωp t C c.c.



C �3/2u(1)(x , t, X , T ) C . . . , (8.106)

where qp and ωp are related through the dispersion relation (8.103)

ω2
p D 1 � 2D sin2

� qp

2

�
. (8.107)

By substituting this ansatz (8.106) into the equations of motion (8.105) and ap-
plying a solvability condition on the terms of order �3/2, BCL obtained a pair of
coupled amplitude equations for the counterpropagating wave amplitudes A˙

@A˙

@T
˙ vg

@A˙

@X
D � sin2

� qp

2

�
A˙ � i

h

2ω p

sin2
� qp

2

�
A�

�
�

4η sin4
� qp

2

�
� i

3
2ωp

� �jA˙j2 C 2jA�j2�
A˙ , (8.108)

where the upper signs (lower signs) give the equation for AC (A�) and

vg D @ωp

@qp
D � D sin(qp)

2ωp
(8.109)
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is the group velocity. This equation is the extension of (8.47) to many coupled res-
onators, only now the parametric drive couples amplitudes of the two counterprop-
agating waves AC and A� instead of coupling A and A�. A detailed derivation of
the amplitude equations (8.108) can be found in [6, 7]. We should note that similar
equations were previously derived for describing Faraday waves [29, 46].

By linearizing the amplitude equations (8.108) about the zero solution (AC D
A� D 0), we find that the linear combination of the two amplitudes that first
becomes unstable at h D hc � 2ωp is B / (AC � iA�). This represents the
emergence of a standing wave with a temporal phase of π/4 relative to the drive.
However, the orthogonal linear combination of the amplitudes decays exponential-
ly and does not participate in the dynamics at onset. Thus, just above threshold a
single amplitude equation should suffice, describing this standing wave pattern.
We describe the derivation of this equation in the next section.

8.5.2
Reduction to a Single Amplitude Equation

Nonlinear dissipation plays an important role in the saturation of the response
to parametric excitation, as we saw in Section 8.3.4. Thus, it is natural to try to
keep a balance between the strength of this nonlinearity and the amount by which
we drive the system above threshold. Assuming that the nonlinear damping is
weak, we use it to define a second small parameter δ D p

η. This particular
definition turns out to be useful if we then scale the reduced driving amplitude
(h � hc)/ hc linearly with δ, defining a scaled reduced driving amplitude r by let-
ting (h � hc)/ hc � r δ. We can then treat the initial linear combination of the two
amplitudes in (8.108) that becomes unstable by introducing a second ansatz,�

AC

A�

�
D δ1/4

�
1
i

�
B(� , τ) C δ3/4

�
w (1)(X , T, � , τ)
v (1)(X , T, � , τ)

�

C δ5/4
�

w (2)(X , T, � , τ)
v (2)(X , T, � , τ)

�
, (8.110)

where � D δ1/2 X and τ D δT . Substitution of this ansatz allows one to obtain the
correction to the solution at order δ3/4�

w (1)

v (1)

�
D 1

2 sin2(q p /2)

�
�vg

@B

@�
C i

9
2ω p

jBj2B

� �
1
�i

�
, (8.111)

after which a solvability condition applied to the terms of order δ5/4 yields an equa-
tion for the field B(� , τ). After scaling, this takes the form

@B

@τ
D r B C @2 B

@� 2
C i

2
3

�
4jBj2 @B

@�
C B2 @B�

@�

�
� 2jBj2B � jBj4B . (8.112)

This is the BCL amplitude equation. It is governed by a single control parameter,
the reduced drive amplitude r, and captures the slow dynamics of the coupled res-
onators just above the onset of parametric oscillations. The reader is encouraged
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to consult [7] for a more detailed account of the derivation of the BCL equation.
The form of (8.112) is also applicable to the onset of parametrically driven standing
waves in continuum systems with weak nonlinear damping, and combines in a
single equation a number of effects studied previously [13, 14, 23, 29, 46, 53].

8.5.3
Single Mode Oscillations

Now that this novel amplitude equation has been derived by BCL it can be used to
study a variety of dynamical solutions, ranging from simple single mode to more
complicated nonlinear extended solutions and, after slight modifications, also for
the dynamics of localized solutions. BCL used the amplitude equation to study the
stability of single mode steady-state solutions

B D bk e�ik � , (8.113)

that is, standing wave solutions that consist of a single sine wave pattern with one
of the allowed wave vectors qm . The wave vector k gives, in some scaled units, the
difference between the wave vector qp determined by the pump frequency through
the dispersion relation, and the wave vector qm D mπ/(N C 1), m D 1 . . . N , of the
actual mode that is selected by the system.

A number of interesting results are readily evident if we simply substitute the
single mode solution (8.113) into the BCL amplitude equation (8.112). From the
linear terms in the amplitude equation we find, as expected, that for r > k2 the
zero displacement solution is unstable to small perturbations of the form of (8.113).
This defines the parabolic neutral stability curve, which is shown as a dashed line
in Figure 8.15. The nonlinear gradients and the cubic term take the simple form
2(k � 1)jbk j2bk . For k < 1 these terms immediately act to saturate the growth
of the amplitude assisted by the quintic term. Standing waves therefore bifurcate
supercritically from the zero displacement state. For k > 1 the cubic terms act to
increase the growth of the amplitude, and saturation is achieved only by the quintic
term. Standing waves therefore bifurcate subcritically from the zero displacement
state. The saturated amplitude jbk j, obtained by setting (8.112) to zero, is given by

jbk j2 D (k � 1) ˙
q

(k � 1)2 C (r � k2) � 0 . (8.114)

In Figure 8.16 we plot jbk j2 as a function of the reduced driving amplitude r for
three different wave number shifts k. The solid (dashed) lines are the stable (un-
stable) solutions of (8.114). The circles were obtained by numerical integration of
the equations of motion (8.105). For each driving amplitude, the Fourier compo-
nents of the steady state solution were computed to verify that only single modes
are found, suggesting that in this regime of parameters only these states are stable.

BCL showed the power of the amplitude equation in predicting the first single
mode solution that should appear at onset. In addition it also predicts the sequence
of Eckhaus instabilities that switch to other single mode solutions as the reduced
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drive amplitude r is quasistatically increased. Kenig et al. [38] used the amplitude
equation for a more general analysis of the question of pattern selection. This ques-
tion is concerned with predicting which oscillating pattern will be selected, under
particular experimental conditions, from among all of the stable steady-state solu-
tions that the array of resonators can choose from. In particular, they have consid-
ered experimental situations in which the drive amplitude r is changed abruptly or
swept at rates that are faster than typical transient times. In all cases the predictions
of the amplitude equations are confirmed with numerical simulations of the origi-
nal equations of motion (8.105). Experimental confirmation of these predictions is
still not available.
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