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Abstract

Experimentally observed crystals range from periodic crystals, through incommensurately mod-
ulated crystals and composite crystals, to quasicrystals and even modulated quasicrystals. How
does one characterize in a unified manner the symmetry of all these types of crystals? How does
one classify all crystals according to their symmetry? These questions are answered through a
review of the Fourier-space approach to crystal symmetry of Rokhsar, Wright, and Mermin. The
notion of indistinguishability, which is central to the approach, is introduced and used as the
basis for a generalization of the traditional space-group classification scheme, applicable to all
types of crystals known to date.

1. Introduction

The discovery by Dan Shechtman [28] in 1982 of the first quasicrystal has launched
an exciting reevaluation of our understanding of the nature of the crystalline state, one
which is still far from being complete. It is clear that the old paradigm of a crystal as
a periodic arrangement of identical unit cells can no longer hold. The Commission on
Aperiodic Crystals of the International Union of Crystallography [35, page 928] has
made this statement official in 1991 by giving a new definition to crystal:

“..by crystal we mean any solid having an essentially discrete diffraction diagram,

and by aperiodic crystal we mean any crystal in which three-dimensional lattice

periodicity can be considered to be absent.”
The new definition was intentionally made vague by the inclusion of the word “essen-
tially”. It was meant only as a temporary working-definition until a better understanding
of crystallinity emerges. We shall adopt it for the purpose of our discussion here, but
we shall consider only those crystals whose density functions may be described as a
superposition of a countable number of plane waves. These are crystals which ide-
ally (disregarding such effects as thermal diffuse scattering) would produce diffraction
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diagrams that may be expressed as sums of delta functions. We shall refer to such
aperiodic crystals as quasiperiodic crystals.! All the experimentally observed crystals,
whether modulated crystals, composite crystals, or quasicrystals — a distinction which
will be made clear in Section 2 — belong to this category.

In this paper we shall be concerned with the symmetry of crystals. We shall see
that one needs to introduce new ideas in order to capture the notion of symmetry in
quasiperiodic crystals. The traditional theory of crystal symmetry, which was developed
along the lines of the old paradigm, describes the symmetry of a crystal by its space
group, the set of rigid motions in three-dimensional space — combinations of transla-
tions, rotations, and reflections — that leave the crystal invariant. Such a description is
not valid for quasiperiodic crystals, not only because there are no longer any transla-
tions that leave the crystal invariant, but also because there are, in general, no rotations
that leave the crystal invariant. Yet, quasiperiodic crystals clearly possess some kind
of symmetry.

We shall describe here a generalization of the space-group classification scheme
that does not rely on spatial periodicity and captures the new notion of symmetry in
quasiperiodic crystals. This is accomplished by introducing the idea of indistinguisha-
bility and using it to redefine the concept of point-group symmetry. This reformulation
of conventional crystallography is most naturally described in Fourier space, where it
becomes a symmetry-based classification scheme for diffraction patterns consisting of
sharp Bragg peaks in line with the new definition of crystal. When those diffraction
patterns can be indexed by three integers, the general scheme reduces to the traditional
space-group classification, but the same scheme works just as well for the diffraction
patterns of quasiperiodic crystals, which require more than 3 integers for their indexing.
Furthermore, we shall show that the scheme is applicable to all types of quasiperiodic
crystals requiring only minor modifications for the cases of modulated crystals and
composite crystals.

The idea of describing space groups in Fourier space was proposed over 30 years
ago by Bienenstock and Ewald [1]. Only after the discovery of quasicrystals was it
established as a practical and unified symmetry-classification scheme for periodic and
quasiperiodic crystals by Rokhsar, Wright, and Mermin [24, 25], with later contributions
by Rabson, Ho, Driger, and Lifshitz?2 .

There exists an alternative extension of the space-group classification scheme to
quasiperiodic crystals, which will not be discussed here. It was developed by de Wolff,
Janssen, and Janner [8,32,34] and was used to classify the symmetry of the simplest
incommensurately modulated crystals even before the discovery of the first quasicrys-
tal. Their approach treats quasiperiodic crystals as three-dimensional sections of struc-
tures periodic in a higher-dimensional “superspace”. The symmetry of the quasiperiodic

! Note that the new definition is sufficiently vague to allow even an ideal aperiodic crystal to have other
terms in its Fourier spectrum in addition to a sum of delta functions. As defined here, the density of a
quasiperiodic crystal is an almost periodic function of r, according to Bohr [2].

2 For a recent review of the Fourier-space approach see [15]. For a more detailed argument establishing the
applicability of the approach to all types of quasiperiodic crystals see [10].



R. Lifshitz| Physica A 232 (1996) 633-647 635

crystal is then given by the high-dimensional space group describing the set of rigid mo-
tions in superspace that leave invariant the high-dimensional structure. The superspace
approach, which was originally developed for treating incommensurately modulated
crystals, has since been extended to deal also with composite crystals [7,30,31,33]
and with quasicrystals [9]. In each case special measures need to be taken to accom-
modate the particular type of quasiperiodic crystal.

In Section 2 we introduce the different types of quasiperiodic crystals. In Section 3
we discuss the description of the symmetry of a given crystal, leading to the general-
ization of the space-group concept. We then show in Section 4 how this generalization
is used as a basis for a symmetry classification scheme for all crystals. In Section 5 we
discuss the phenomenon of extinctions, which has a straightforward explanation when
viewed from the perspective of Fourier space. We finish in Section 6 with a selection
of examples illustrating some of the ideas used in enumerating the possible symmetry
classes of crystals, and outlining some of the problems that are yet to be solved.

2. The different types of quasiperiodic crystals

Although an official nomenclature has not yet been established, one clearly distin-
guishes between different kinds of quasiperiodic crystals: incommensurately modulated
crystals, incommensurate composite crystals, and quasicrystals. We should clarify what
we mean by these terms. ?

The simplest quasiperiodic crystal is an incommensurately-modulated periodic crys-
tal. 1t can be considered as a periodic basic (or average) structure which is perturbed
in a periodic way (“modulated”), with the period of the perturbation incommensurate
with the underlying periodicity of the basic structure. The nature of the perturbation
is usually a periodic displacement of the atomic positions or a periodic variation in
the occupation probability of the atomic sites. The diffraction diagrams of incommen-
surately modulated periodic crystals are characterized by having a subset of “main
reflections” — Bragg peaks which are brighter than the others — that can be indexed
by three integers and forms an ordinary commensurate reciprocal lattice. This lattice
describes the periodicity of the average periodic structure. The weaker peaks, called
“satellites”, describe the periodicity of the modulation.

Incommensurate composite crystals, also called intergrowth compounds,* can be
considered as composed of two or more interpenetrating subsystems with mutually
incommensurate periodicities. Each subsystem when viewed independently is itself a
crystal — in all known examples a periodic one — which is incommensurately modulated
due to its interaction with the other subsystems. Examples of composite crystals are

3 See also van Smaalen’s recent review on quasiperiodic crystals [29]. Our definitions of the different kinds
of quasiperiodic crystals differ from the ones given there in two ways: (1) Van Smaalen requires the average
structure of a modulated crystal and the subsystems of a composite crystal to be periodic. (2) He defines
quasicrystals as crystals with “non-crystallographic” point groups.

4 We follow here the nomenclature used by van Smaalen [31].
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misfit layer structures which consist of alternating layers of the different subsystems
where the periodicity within the layers of one subsystem is incommensurate with those
of the other subsystems. There are also channel-type structures which possess one host
structure containing channels in which the other subsystem(s) are accommodated. The
diffraction diagrams of composite crystals are characterized by the existence of two
or more subsets of main reflections, each forming a commensurate reciprocal lattice,
caused by the average structure of one of the periodic subsystems, and a set of weak
reflections caused by the modulations.

There are also quasiperiodic crystals for which a description in terms of a mod-
ulation of a basic structure or a composition of two or more substructures is either
inappropriate or impossible. One frequently encountered model for such crystals is a
quasiperiodic tiling such as the famous Penrose tiling. One fills space with “unit cells”
or “tiles” in a way that maintains long-range order (and produces a discrete diffraction
diagram) without being periodic. The observed icosahedral quasicrystals as well as the
octagonal, decagonal, and dodecagonal quasicrystals fall under this category. There are
also examples of quasiperiodic crystals with cubic symmetry [6], and possibly also
examples with tetrahedral [4,5] and with hexagonal [26] symmetry, that are neither
modulated crystals nor composite crystals. We refer to all such quasiperiodic crystals
as quasicrystals. We caution the reader that in most of the literature the term “quasi-
crystal” still refers only to quasiperiodic crystals which violate the “crystallographic
restriction”, i.e. those which have an n-fold axis of symmetry with n =5 or n > 7.

Finally, one can of course have incommensurately modulated quasicrystals [3,14],
where a quasiperiodic basic structure is incommensurately modulated. One can also, at
least theoretically, construct composite crystals where the subsystems are themselves
already quasiperiodic.

3. Symmetry description — The notion of indistinguishability

In trying to understand the symmetry of a quasiperiodic crystal it might be helpful to
have in mind the two pictures shown in Fig. 1 — that of a typical diffraction pattern and
that of a typical real-space model of a quasicrystal. The diffraction pattern immediately
reveals a certain kind of symmetry. This is expressed by the set of (proper or improper)
rotations, applied about the origin of wave-vector space, which leave invariant the
positions of the Bragg peaks. We shall discuss this further in Section 3.1. But what
exactly is the nature of the symmetry exhibited by the crystal itself (or by the tiling
which represents it)? What do we mean when we say that a crystal has the symmetry
of a certain rotation?

In the case of a periodic crystal we mean that the rotation leaves the density
of the crystal invariant to within a translation. The densities of quasiperiodic crys-
tals, however, in general possess no such symmetries. In fact, it is an easy exer-
cise to show that if a two-dimensional crystal does contain more than a single point,
about which an n-fold rotation (» > 2) brings it into perfect coincidence with
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Fig. 1. On the left, a typical diffraction pattern of an icosahedral quasicrystal taken along an axis of S-fold
symmetry (source unknown). On the right, a section of the Penrose tiling, a model of a two-dimensional
crystal with 10-fold symmetry.

itself, then the crystal is necessarily periodic. Nevertheless, certain rotations, when
applied to a quasiperiodic crystal, take it into one which looks very much like the
original unrotated crystal. This is because the two crystals contain the same statis-
tical distribution of bounded substructures of arbitrary size. One observes that any
bounded region in the rotated quasiperiodic crystal can be found in the unrotated
crystal, but the larger the region the further away one has to look in order to find
it.

Two densities that are statistically the same in this sense though not necessarily
identical are called indistinguishable. The precise mathematical condition for densities
p and p’ to be indistinguishable is that they have the same positionally averaged n-point
autocorrelation functions for all »:

lim %/drp(rl —r)...p(r, — 1)

V—oo

1
= Vlim 7 /drp'(rl —1)...0p (r, — 1) )

The key to generalizing crystallography to include quasiperiodic crystals is thus to
redefine the point group of the crystal to be the set of (proper or improper) rotations
which leave it indistinguishable, i.e. which preserves all positionally averaged density
autocorrelation functions. This redefinition reduces to the traditional one in the case of
periodic crystals, and takes on a very simple form in Fourier space which is used to



638 R Lifshitz! Physica A 232 (1996) 633-647

give a concise description of the full space group symmetry of the crystal. This will
be established in Section 3.2.

3.1. Lattices of wave vectors

Each Bragg peak in the diffraction pattern determines a wave vector k at which the
density of the crystal has a nonvanishing coefficient in its Fourier expansion,

pr) =) plk)e™". )

keL

The (reciprocal) lattice L is defined as the set of all integral linear combinations of the
wave vectors determined by the observed Bragg peaks. As so defined, L includes wave
vectors at which the coefficients p(k) are too weak to be detected in the diffraction
experiment. As the resolution is improved more peaks may appear at larger wave
vectors and in the quasiperiodic case, as seen in Fig. 1, also between already existing
peaks. This is because quasiperiodic lattices are ‘dense’ in the mathematical sense —
there is no requirement of minimal distance between wave vectors. The lattice L may
also include wave vectors at which p(k) is required to vanish by the symmetry of
the crystal. Such wave vectors that are in the lattice but are missing from the Fourier
expansion of the density are related to the phenomenon of extinctions which will be
discussed in Section 3.

The lattices of all observed crystals may be expressed as integral linear combinations
of a finite number of wave vectors. The minimum number D of vectors needed to
generate the lattice is called its rank or its indexing dimension. A crystal is periodic
if and only if the rank of its lattice is equal to the physical dimension d. Only then is
the lattice a conventional ‘reciprocal lattice’ related in the familiar way to a lattice of
real-space translations under which the periodic crystal is invariant.

We always use the term ‘lattice’ to refer to the rank-D lattice of wave vectors
and not to any direct lattice of translations in ordinary (or higher-dimensional) real
space. The lattice is an example of a Z-module, which is defined as a vector space
except that the scalars are restricted to be integers. Some crystallographers therefore
like to call it the Z-module or the Fourier module. We choose not to follow this
nomenclature.

The point group G, of the lattice (also called its holohedry) is the set of proper and
improper rotations applied about the origin of Fourier space which leave the lattice
invariant. We shall consider only finite® subgroups of (O(3) and require that they
contain the inversion because every lattice contains the negative of each of its vectors.
The point group G of a crystal is necessarily a subgroup of the point group G of its
lattice of wave vectors.

Note that Piunikhin [20] has discovered that lattices of finite rank may have infinite point groups.
Mermin [17] has given a simple construction of a two-dimensional lattice of rank 4 with infinite rotational

symmetry.
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3.2. The space group — A point group with phase functions

It is easily shown [15, p. 7] that the condition (1) for indistinguishability acquires
a very simple form in Fourier space — the Fourier coefficients of two indistinguishable
densities p and p’ must be related by

p'(k) = & Wp(k), (3)

where y(k), called a gauge function, is linear modulo an integer over the lattice of
wave vectors (i.e. y(ki + kz) = x(k;) + x(ks) whenever k; and k; are in the lattice,
where “=" indicates equality modulo an integer).

In the periodic case one can show that 2my(k) is necessarily of the form k - d for
some constant vector d independent of Kk, so that p'(r) = p(r + d) and indistinguisha-
bility reduces back to identity to within a translation. One can then combine point
group operations with translations to recover the traditional space groups of periodic
crystals, containing operations that leave the density identical to what it was. In the
quasiperiodic case one must retain the general form of y(k) which is defined only on
the lattice and cannot be linearly extended to arbitrary k.

Because the point group is defined to leave the density indistinguishable, we can
associate with each point group operation g a gauge function ®,(k), called a phase
function, which relates p(gk) and p(k):

plgk) = Vg (k) 4)

Since p([ghlk) = p(g[kk]), it follows directly from (4) that the set of phase functions
associated with the elements of a point group G must satisfy the group compatibility
condition:

VgheG:  ®u(k) = By(hk) + (k). (5)

These constraints on the phase functions are the generalizations to quasiperiodic crystals
of the Frobenius congruences in the traditional space group description of periodic
crystals (see, for example, [27, p. 69]).

Putting all the pieces together, the space group of a crystal, which describes its
symmetry, is given by:

(1) A4 lattice of wave vectors L, invariant under some point group G;, which only
in the special case of periodic crystals is reciprocal to a lattice 7 of direct-space
translations leaving the crystal invariant;

(i1) A point group G, which is a subgroup of G;, whose elements leave the density
of the crystal indistinguishable, a criterion which in the case of periodic crystals
reduces to identity to within a translation; and

(iii) A set of phase functions ®,(k), one for every g in G, satisfying the group
compatibility condition (5), which only in the periodic case may be given by a
corresponding set d, of direct-space translations in the form k - d.
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We continue to call this a space group even though it is no longer a subgroup of the
Euclidean group £(3). Nevertheless, it may be given an algebraic structure of a group
consisting of ordered pairs (g, ®,) as shown by Rabson et al. [21].

How does this description differ for the different types of quasiperiodic crystals
introduced in Section 2? In essence there is no difference, in practice one proceeds as
follows.

If no distinctions are made between strong and weak reflections in the diffraction
pattern of a crystal then its symmetry is described by its space group as was just
illustrated. This is the case for periodic crystals and for quasicrystals.

If the structure is a modulated periodic crystal, characterized by the existence of a
single sublattice of main reflections, then one might want to supplement the specifica-
tion of the space group by stating which of the possible sublattices of the full lattice
contains the strong peaks. Identifying a particular sublattice of main reflections can be
viewed as using a particular setting of the space group which emphasizes the existence
of that sublattice. This is done by choosing a set of generating vectors for the full
lattice of which the first three generate just the lattice of main reflections. Thus, the
symmetry of the crystal is again described by its space group, given in an appropriate
setting.

If the structure is a composite crystal with two or more sublattices of main reflec-
tions then one may supplement the space group description by specifying a// of the
sublattices that contain main reflections, i.e. by listing all the appropriate settings. The
same procedure applies to the case of modulated quasicrystals or hypothetical com-
posite quasicrystals with the only difference that one is looking for sublattices of main
reflections whose rank is greater than 3.

4. Symmetry classification — Bravais classes and space group types

There are infinitely many crystal structures each of which has a space group describ-
ing its symmetry. The common symmetry properties of the different crystal structures
become clear only after they are classified into properly chosen equivalence classes. We
are concerned here with the classification of crystals into Bravais classes (Section 4.1),
point groups, and space group types (Section 4.2).°

4.1. The Bravais class — A class of (reciprocal) lattices

Crystals are classified into Bravais classes according to their lattices of wave vec-
tors. Two lattices are in the same Bravais class if one can interpolate between them
with a sequence of lattices, all with the same point group and rank. Such an inter-
polation provides an isomorphism between the two lattices as additive abelian groups
which also preserves the action of the point group. The relative intensities of the

6 Other classifications are also possible, see, for example, [27, Section 6.3].
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Bragg peaks associated with the lattice wave vectors do not come into this def-
inition of Bravais class, only the positions of the wave vectors in the lattice are
important.

4.2. The space group type — A class of phase functions

The finer classification of crystals in a given Bravais class with a given point group
is an organization of sets of phase functions into equivalence classes according to two
criteria.

1. Gauge equivalence. Two sets of phase functions, ® and @, that describe indis-
tinguishable densities p and p’, related by a gauge function , are associated with the
same symmetry class. It follows from (3) and (4) that two such sets must be related
by

@) (k) = By(k) + x(gk — k) (6)

for every g in the point group and every k in the lattice. We call phase functions
describing indistinguishable densities gauge-equivalent and Eq. 6, converting @ into
@', a gauge transformation.

2. Scale equivalence. Two sets of phase functions, ® and ®’, are also counted as
equivalent if there is a symmetry s of the lattice L, which is an automorphism of the
point group G = sGs™~!, taking one set into the other

Pl (k) = By-1(sk). (N

Operations s that are in the point group G of the crystal have precisely this property, but
one can show directly from (5) that for such s, &' and ® are already gauge-equivalent.
If s is not an element of the point group G, then the two sets of phase functions will
not in general be gauge-equivalent. In the periodic case s can be an element of O(3)
(for example, a 90° rotation when G is a tetrahedral point group on a cubic lattice),
or an element of O(3) combined with a rescaling of the primitive lattice-generating
vectors (for example, 90° rotations of an orthorhombic lattice). Here the distinct gauge-
equivalence classes making up a single space group type are the different settings of
that space group type. In the quasiperiodic case s can be an isotropic rescaling of the
entire lattice (as in icosahedral quasicrystals), an isotropic rescaling of a sublattice (as
in axial quasicrystals), or even independent rescalings of individual lattice-generating
vectors. Because rescalings are often (though not always) a part of the transformation
s, two classes of gauge-equivalent phase functions that are further identified in this
manner are called scale-equivalent.

The classes of phase functions under gauge equivalence and scale equivalence cor-
respond precisely to the space group types in the periodic case, and constitute the
extension of the space group classification scheme to the general quasiperiodic case.
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5. Gauge-invariant phases — Screw axes, glide planes, and extinctions

It follows from the form of the gauge transformation (6) that if gk = k then ®,(k) is
independent of the choice of gauge. These gauge-invariant phases are directly related
to the phenomenon of extinctions, for it follows directly from the definition (4) of
the phase function that whenever gk = k, the Fourier coefficient p(k) vanishes unless
®,(k) also vanishes (modulo an integer). Thus, the phase functions of a given space
group type immediately determine the extinctions. It has been shown by Mermin [16]
that there is no other generic reason for wave vectors in the lattice to be missing from
the Fourier expansion of the density.

Extinctions have a somewhat different character when viewed from the perspective
of Fourier space. Traditional crystallography starts with a direct lattice of translations,
dual to this lattice is a lattice of wave vectors, and associated with each wave vector
is a Bragg peak. Certain Bragg peaks may be missing from the diffraction pattern as a
consequence of special symmetry elements of the space group — screw axes and glide
planes. In Fourier-space crystallography one begins with the observed diffraction pattern
and extends it by taking all integral linear combinations of observed wave vectors to
form the lattice. Every lattice vector is a candidate for an additional Bragg peak unless
the associated Fourier coefficient is required by the space group to vanish. The emphasis
thus shifts from extinctions as missing Bragg peaks to extinctions as peaks that can
never be added to the diffraction pattern no matter how much the resolution is improved.

One can easily show by using the group compatibility condition (5) that a phase
function associated with a mirror m can only assume the values 0 and % in the invariant
plane of the mirror, and that a phase function associated with an »-fold rotation » can
only assume the values j/n (j =0,1,...,n — 1) on the axis of rotation.

We call the plane of a mirror m a glide plane if ®,(k) Z 0 for any lattice vector
in the plane. We call the axis of a rotation r a screw axis if ®,(k) # 0 for any lattice
vector on the axis. These definitions eliminate the need to associate extinctions with
the interplay between rotations and translations which is peculiar to the periodic case.

6. Enumeration — Basic ideas and selected examples

We finish with a selection of examples illustrating some of the ideas used in enu-
merating the possible Bravais classes and space group types, and outlining some of the
problems that are yet to be solved. In going through these examples we would like
to emphasize the three-dimensional geometric nature of the enumeration procedures, as
well as their generality in dealing with the different types of quasiperiodic crystals.

6.1. Bravais classes

Enumerating all Bravais classes of lattices of a given point group and rank can be
a highly non-trivial task. Consider, for example, the case of two-dimensional N-fold
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symmetric lattices whoses rank is the smallest compatible with their point group (¥
is necessarily even because in two dimensions the 2-fold rotation, which takes every
wave vector to its negative, is always a symmetry of the lattice). The simplest lattices
are given by all integral linear combinations of N unit vectors separated in angle by
2n/N and are called standard lattices. Mermin et al. [19] showed that a mapping
of the enumeration problem to the mathematical theory of cyclotomic integers (all
integral linear combinations of the Nth roots of unity) reveals a surprising result. All
2-dimensional N-fold symmetric lattices (of lowest rank) are equivalent to the standard
lattices for all N from 4 to 44 and for N = 48,50, 60, 66,70, 84, and 90. For all other
N there are also non-standard lattices and the number of Bravais classes into which
they are classified can be enormous (for example 359057 for N = 128). Though real
crystals are not known to exist with axes of symmetry of such high order, one should
not take lightly the statement, for example, that all 12-fold lattices of rank 4 belong
to one Bravais class.

With this word of caution in mind we can go ahead and try to develop some
systematic techniques for the enumeration of Bravais classes. One such technique is
the “modular lattice method”. Simply stated it requires one to find a common sublattice
for all lattices of a given rank and point group, and then to consider all the distinct
ways of adding lattice points to construct the full lattice. This way of looking at all
possible lattices corresponds, for example, to viewing each rank-3 cubic lattice as a
simple cubic lattice with a basis. The significance of the method is in reducing the
Bravais class counting to a finite procedure by having to consider only a finite number
of modular lattices.

The modular lattice method was used by Rokhsar et al. [23] to enumerate the rank-6
icosahedral Bravais classes. It was also used by Mermin and Lifshitz [18] to enumer-
ate the Bravais classes of the simplest reducible incommensurate lattices — all the
three-dimensional rank-4 Bravais classes and all the three-dimensional rank-6 cubic
and tetrahedral Bravais classes. By “reducible” we mean that these lattices can be
expressed as integral linear combinations of vectors from a rank-3 sublattice, indepen-
dently invariant under the point group, and vectors from an additional rank-1 (or in
the cubic and tetrahedral case, rank-3) lattice. Such lattices are the simplest lattices
that can be used to describe the symmetry of incommensurately modulated crystals or
composite crystals because of the need to associate invariant rank-3 sublattices with
the sets of main reflections.

It was shown that all these reducible Bravais classes, except for the rank-6 tetrahedral
ones, are not only reducible but also decomposable, meaning that the additional rank-1
(or in the cubic case, rank-3) lattice is also independely invariant under the point
group. This implies, for example, that the rank-6 cubic lattices are all sums of two
of the well-known rank-3 cubic lattices (the primitive P, body centered /*, and face
centered F* — the star indicating that the lattices are so centered in Fourier space).
As such they are classified into six Bravais classes denoted by the two constituent
rank-3 Bravais classes as: P+ P, I*+I*, F*+F*, P4+ F*, P+1*, and I* + F*. There
are three Bravais classes of rank-6 tetrahedral lattices which cannot be decomposed in
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such a way since we know that there are no tetrahedral lattices of rank 3, yet they are
3 + 3 reducible. Lattices in these three Bravais classes are most simply described as
integral linear combinations of the six vectors (1, +a,0),(0,1, £a), and (Fa,0, 1) with
primitive indexing, face-centered indexing (the sum of all integers even) and body-
centered indexing (all integers of the same parity). When the irrational number % is
equal to the golden mean these become the three Bravais classes of rank-6 icosahedral
crystals.

Using a variant of the modular lattice idea, Lifshitz and Mermin [11, 12] have given
a general proof that all hexagonal and trigonal lattices of arbitrary (but finite) rank
are decomposable into only three types of periodic building blocks: rank-1 sublattices
along the axis of 3- or 6-fold symmetry, rank-2 triangular sublattices in the plane
perpendicular to the axis of rotation, and — only in the trigonal case — rank-3 rhom-
bohedral sublattices. One can then use this property of the lattices to enumerate all
hexagonal and trigonal Bravais classes of arbitrary rank-n by simply considering all
the distinct ways of putting these building blocks together such that the rank adds up
to n.

A more general question to which we still do not have an answer is how to determine
the set of indecomposable Bravais classes for any given point group. We have shown,
for example, that all three-dimensional rank-4 lattices are decomposable. Is this an
indication that in the orthorhombic system, as in the trigonal-hexagonal system, all
indecomposable lattices are of rank 3 or less, or are there indecomposable orthorhombic
lattice of rank greater than 4? This question is related to finding all the indecomposable
integral representations of a given group, for which, as far as we know, no simple
and general answer exists (as in the cases of complex or real representations).

6.2. Gauge-equivalence classes

When the lattice of wave vectors has finite rank the procedure for determining the
possible phase functions is straightforward because they need be specified only by their
values at the lattice-generating vectors (due to their linearity), and only for a set of
elements g sufficient to generate the point group G (due to the group compatibility
condition). These values are constrained by applying the group compatibility condition
to the point group generating relations. By making a judicious choice of gauge one
can simplify the calculation from the start by setting many of the unknown phases
to zero, extracting a unique representative for each class of gauge-equivalent phase
functions. As an example [15], all the icosahedral space groups may be specified by
a single phase function even though the two icosahedral point groups contain 60 and
120 elements.

When the lattice is decomposable into a sum of sublattices of lower rank, each inde-
pendently invariant under the lattice point group, it is not necessary to recompute the
possible gauge-equivalence classes for the high-rank lattice. One only needs to consider
all the different combinations of the gauge-equivalence classes already classified for the
lower-rank sublattices. This is possible because the group compatibility condition (5)
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acts independently in each invariant sublattice and the choice of gauge is independent
in each invariant sublattice. This idea was greatly exploited by Lifshitz and Mermin
[11,12].

6.3. Scale-equivalence classes

The remaining part of the space-group classification is merely a matter of simplifying
the bookkeeping by grouping together different gauge-equivalence classes which are
scale-equivalent. Although the grounds for this further identification are stated quite
precisely, whether one chooses to make it or not can be a matter of convention. In point
groups which lack-inversion symmetry, for example, the inversion is still a symmetry
of the lattice and as such it can be used to relate gauge-inequivalent phase functions.
In the periodic case, one normally chooses not to make this identification (because
the inversion is not sense preserving), counting pairs of right-handed and left-handed
gauge-equivalence classes as distinct space group types.

When dealing with incommensurately modulated crystals or composite crystals one
may wish to constrain the rescaling operations s to those which leave invariant the
sublattice(s) of main reflections. In this way one can directly obtain the different settings
of the space groups which are appropriate for the description of such crystals. By first
focusing only on the gauge-equivalence classes of phase functions, we give the results
of the non-trivial part of the calculation in a form that applies to arbitrary quasiperiodic
crystals of the appropriate symmetry and rank. By deferring to the end the bookkeeping
question of which classes to further identify through scale-equivalence we retain the
freedom to use whatever transformations are appropriate to the material of interest.
In such a way we recover both the space groups and their settings which may be
used to emphasize particular sublattices of main reflections, making straightforward the
treatment of materials even when they fail to fit neatly into any particular conventional
category (modulated crystals, composite crystals, and quasicrystals) and allowing for a
unified description of materials that might interpolate between the different categories.
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