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Observation of log-periodic oscillations in the quantum dynamics

of electrons on the one-dimensional Fibonacci quasicrystal
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We revisit the question of quantum dynamics of electrons on the off-
diagonal Fibonacci tight-binding model. We find that typical dynamical
quantities, such as the probability of an electron to remain in its original
position as a function of time, display log-periodic oscillations on top of the
leading-order power-law decay. These periodic oscillations with the
logarithm of time are similar to the oscillations that are known to exist
with the logarithm of temperature in the specific heat of Fibonacci
electrons, yet they offer new possibilities for the experimental observation
of this unique phenomenon.
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1. Fibonacci electrons

The Fibonacci sequence of Long (L) and Short (S) intervals on the one-dimensional
line – generated by the simple substitution rules L! LS and S! L – is a favorite
textbook model for demonstrating the peculiar nature of electrons in quasicrystals
[1–3]. The wavefunctions of Fibonacci electrons are neither extended nor exponen-
tially localized, but rather decay algebraically; the spectrum of energies is neither
absolutely continuous nor discrete, but rather singular-continuous, like a Cantor set;
and the quantum dynamics is anomalous. In recent years, we have studied how these
three electronic properties change as the dimension of the Fibonacci quasicrystal
increases to two and three [4–8], by constructing square and cubic versions of the
Fibonacci quasicrystal [9].

The one-dimensional off-diagonal Fibonacci tight-binding model is constructed
by associating a unit hopping amplitude between sites connected by a Long interval,
and a hopping amplitude T4 1 between sites connected by a Short interval, while
assuming equal on-site energies that are taken to be zero. The resulting tight-binding
Schrödinger equation, on an FN-site model, is given by

Tjþ1 ð jþ 1Þ þ Tj ð j� 1Þ ¼ E ð j Þ, j ¼ 1, . . . ,FN, ð1Þ
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where  (j) is the value of an electronic eigenfunction on site j, E is the corresponding

eigenvalue, FN is the Nth Fibonacci number, and the hopping amplitudes Tj are

equal to 1 or T according to the Fibonacci sequence fTjg ¼ f1,T, 1, 1,T, 1,T, 1,1,T,1,

1,T, 1,T, 1, 1,T, 1,T, . . .g, as described above. The diagonal Fibonacci tight-binding

model is constructed by taking all the hopping amplitudes to be equal to 1, and

taking the on-site energies to have two values, VL and VS, arranged according to the

Fibonacci sequence. These models have been studied extensively ever since the initial

interest in the behavior of electrons in quasiperiodic potentials [10–13], and continue

to offer mathematical challenges to this day [14].
Various two-dimensional extensions of the Fibonacci model were introduced

soon thereafter [15–19], and strongly promoted recently [9] as models for quasicrys-

tals without ‘‘forbidden’’ symmetries [20,21]. In our studies, we have shown that

whereas Fibonacci electrons in one dimension always behave as described above for

any T4 1, in two dimensions, and even more so in three, there is crossover – as the

strength T of the quasiperiodicity is decreased – to a regime in which Fibonacci

electrons behave more and more like electrons do in periodic crystals, particularly in

the sense that their energy spectra develop continuous intervals [4–6]. These results

were recently explained in a rigorous manner by Damanik and Gorodetzki [22].

More surprisingly, our studies of Fibonacci electrons have led us to new results also

in the simple one-dimensional case. We have examined dynamical properties, such as

the probability of an electron to remain in its original position as a function of time.

The power-law decay of this quantity is commonly used for analyzing the dynamics.

We have observed log-periodic oscillations on top of the power-law decay, implying

the existence of an imaginary correction to the exponent. We wish to describe this

new observation here, and indicate some directions for its analysis.
We note that while the model studied is that of an electronic tight-binding

Hamiltonian, no reference is made to any particular electronic property, such as its

statistics, the existence of a Fermi level, or the nature of electron–electron

interactions. Therefore, the results of the model may apply to other quantum

mechanical excitations hopping along the Fibonacci quasicrystal.

2. Quantum dynamics of electronic wavepackets

We consider the dynamics of electronic wavepackets, or states jni, that are initially

localized at a single lattice site n of the one-dimensional Fibonacci quasicrystal,

denoting their amplitude on site m at time t by �n(m, t). Thus, at time t¼ 0 the

wavepacket is given by �nðm, 0Þ ¼ hmjni ¼ �mn, where �mn is the Kronecker delta.

At any later time t4 0 the wavepacket is given by eiHtjni, which is simply the nth

column of the matrix representation of the time evolution operator eiHt, where H is

the off-diagonal matrix representation of the Hamiltonian in Equation (1), and we

take �h¼ 1. Thus, �nðm, tÞ ¼ hmjeiHtjni ¼ ðeiHtÞmn. The choice of phase for the corner

elements of the Hamiltonian matrix determines the Bloch wavenumbers of the

representative eigenfunctions from each of the FN bands in the spectrum. The results

shown below are for periodic boundary conditions, but different choices of

wavenumber yield similar results.
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We characterize the dynamics of wavepackets by monitoring two typical
quantities: (a) the survival probability of the nth wavepacket, defined as the
probability of finding the electron at its initial position at time t, which is given by

SnðtÞ ¼ j�nðn, tÞj
2 ¼ ðeiHtÞnn

�� ��2; ð2Þ

and (b) the inverse participation ratio of the nth wavepacket, which measures the
spatial extent of the wavepacket, and is given by

InðtÞ ¼

P
m �nðm, tÞ
�� ��4

P
m �nðm, tÞ
�� ��2� �2 ¼

X
m

ðeiHtÞmn

�� ��4, ð3Þ

where the last equality holds because the wavepackets are normalized. Both of these
quantities are often used to examine the dynamics of wavepackets. In particular, the
manner in which they decay as the wavepackets spread with time is associated with

different regimes of the quantum dynamics. The actual calculation is performed
numerically by applying the discrete time-evolution operator eiHDt successively to the
initial conditions. The time-step Dt is kept sufficiently small to satisfy the Nyquist
criterion by noting that the largest eigenvalue of H is bounded by 1þT, thus
requiring Dt to be smaller than 1/(2þ2T).

If a function F(t) asymptotically decays with some power law FðtÞ � t��, then the
exponent � can be found by

� ¼ lim
t!1
�
lnFðtÞ

ln t
, ð4Þ

but in general the exponent � is not guaranteed to exist. The bounds �� on �, which
always exist, are given by

�þ ¼ � lim sup
t!1

lnFðtÞ

ln t
; �� ¼ � lim inf

t!1

lnFðtÞ

ln t
; ð5Þ

and if �þ ¼ �� then � exists. Furthermore, if an exponent 05�51 characterizes the
power-law decay of a function F(t), then the same exponent also characterizes the
decay of the time-averaged function

hF it ¼
1

t

Z t

0

Fðt0Þdt0; ð6Þ

for exponents �4 1, characterizing the decay of F(t), the exponent describing the
decay of the time-averaged function (6) is always equal to 1, owing to the 1/t
prefactor, and the constant contribution to the integral from early times. We use the
definition of Equation (5) to study the long-time asymptotic values of the exponents
�S related to the survival probability of a wavepacket and �I related to the inverse
participation ratio of the wavepacket. In what follows, we are mostly concerned with
the early-time behavior of these exponents, in which the log-periodic oscillations
appear, and the behavior is not yet affected by the finite size of the system.

Damanik et al. [14,23] recently used the second moment of the position operator
for the diagonal tight-binding Hamiltonian, to show that far from the periodic limit,
or very close to it, the dynamics of wavepackets is independent of the initial site.
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However, since we are interested in intermediate values of T as well – equivalent in
the diagonal model to intermediate values of the difference jVL � VSj between the
different on-site energies – we expect to find different dynamical behavior depending
on the choice of the initial site. Thus, we typically examine the maximal, the minimal,
and the site-averaged survival probabilities and inverse participation ratios, all of
which display similar qualitative behavior. In [8] we study the different exponents in
detail, in one, two, and three dimensions. Here we concentrate on the 1d results for
the maximal – with respect to the initial site – survival probability exponent �max

S .

3. Asymptotic behavior of the maximal survival probability

We look at the wavepacket whose time-averaged survival probability is maximal.
Figure 1 shows the time-averaged maximal survival probability hSmaxit on a log-log
scale for a 233-site 1d approximant, with periodic boundary conditions, for different
values of T. The exponents extracted from the slopes of the curves in Figure 1 for
four orders of approximants are shown in Figure 2, as functions of T.

Convergence of the exponent �max
S is evident for values of T4 2 even for

relatively small approximants. Convergence is not obtained for smaller values of T
that approach the periodic limit T! 1, where the dynamics is expected to become
ballistic. In this limit the wavepackets quickly spread out and the finite size of the
approximant has a stronger influence on the dynamics. Despite this limitation,
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Figure 1. The time-averaged maximal survival probability for a 233-site 1d approximant, with
periodic boundary conditions, calculated for different values of T. The asymptotic behavior of
the slopes allows us to extract the diffusion exponent �max

S as a function of T, which is
displayed in Figure 2.
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detailed studies of the slopes, for increasing orders of approximants and for varying
time-ranges clearly show that the extracted exponents converge, as the order of the
approximant increases, and longer averaging times are possible. Similar curves are
obtained for the minimal and the site-averaged survival probabilities, as well as for
the minimal, maximal, and site-averaged inverse participation ratios [8].

4. Log-periodic oscillations and the Fourier transform of the density of states

A closer inspection of the temporal decay of the survival probabilities in Figure 1
reveals a small oscillating behavior on top of the overall leading power-law. In order
to better describe this behavior, we divide out the leading asymptotic power-law t��

that was found earlier, and obtain the curves shown in Figure 3. Similar results are
observed in the study of the inverse participation ratio, but are not presented here
owing to space limitations. The curves clearly exhibit log-periodic oscillations –
oscillation that are periodic in log(t) – around the mean value of 1, especially for the
larger values of T. These oscillations contain a basic frequency ! that seems to
decrease with increasing T, as well as a sequence of higher-frequency oscillations
with decreasing amplitudes that seem to develop with time. The fundamental
oscillations can be described empirically by a temporal decay with a complex
exponent of the form

f ðtÞ / t�� þ �t���i! þ ðcorrections� �Þ, ð7Þ
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Figure 2. The exponent �max
S as a function of T for increasing orders of approximants.

Convergence is improved for decreasing values of T as the order of the approximant is
increased.
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which after dividing out the leading power-law term becomes

f ðtÞ

t��
/ 1þ �t�i! ¼ 1þ �e�i! logðtÞ, ð8Þ

yielding oscillations of amplitude � around 1 that are periodic in log(t) with
frequency !.

Log-periodic oscillations are not as uncommon in physics as one may think.
They appear in critical phenomena [24–26], where renormalization-group calcula-
tions yield power-law behavior near phase transitions with complex exponents; they
also appear quite generally in problems related to random walks or classical
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Figure 3. Log-periodic oscillations in the maximal survival probability, after dividing out
the leading power-law decay, for an 89-site approximant with five different values of T.
In addition to the basic periodic oscillation one observes the emergence of higher-frequency
oscillations as time advances. The final panel shows the logarithmic period of the fundamental
oscillations as a function of T.

Philosophical Magazine 2797

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
l
 
A
v
i
v
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
3
9
 
1
7
 
M
a
y
 
2
0
1
1



diffusion on self-similar systems or fractals where the fractal dimension turns out

to be complex [27–31]. As such, they naturally occur in quasiperiodic systems like

the Fibonacci quasicrystal, where the spectrum of energies is multifractal. This has

been observed in quasiperiodic Ising models [32], in specific heat studies of the

tight-binding Fibonacci model [33–37], and in studies of the Harper model [38] and

of the Octonacci quasicrystal [39].
The appearance of log-periodic oscillations in our particular model can be

naturally explained by the self-similarity that is inherent to the Fibonacci

quasicrystal. Assuming the wavepackets spread in a self-similar manner, one can

expect to observe oscillations each time the spatial extent of the wavepacket increases

by a factor of the golden ratio. While this description gives a qualitative explanation

for the existence of log-periodic oscillations it should be noted that the values

obtained for the real part � of the exponents and the imaginary part ! do not satisfy

the expected relation for systems with discrete scaling [40]. Hence it is possible that

the wavepacket does not spread in a self-similar fashion. Further study of this, as

well as of the relation between the different exponents, will be pursued elsewhere.
In specific heat studies, where log-periodic oscillations appear in temperature,

the object of calculation is the partition function

Zð�TÞ ¼
X
k

e��TEk , ð9Þ

where �T is the inverse temperature; whereas in problems of diffusion [31], the object

of calculation is the so-called heat kernel of the diffusion equation

ZðtÞ ¼
X
k

e�Ekt: ð10Þ

In both cases, when expressed in integral form, these are Laplace transforms of the

density of states. To see the relation to the present problem of quantum dynamics, we

expand the expression for the survival probability (2) in eigenstates of the

Hamiltonian,

SnðtÞ ¼
X
k

hnjeiHtj kih kjni

�����
�����
2

¼
X
k

 kðnÞ
�� ��2eiEkt

�����
�����
2

: ð11Þ

Thus, what we are calculating is the magnitude-squared of the Fourier transform of the

density of states, weighted by the overlap of each eigenstate with the initial state jni.
Equation (11) is easily calculated in the periodic limit T! 1 of our model, where

the eigenstates are Bloch functions, with  kðnÞ
�� ��2¼ 1=N independent of n, and the

eigenvalues form a single band with dispersion Ek ¼ cosðkÞ. This yields

ST¼1ðtÞ /

Z �

��

dkeit cos k
����

����
2

/ J20ðtÞ, ð12Þ

where J0(t) is the zeroth-order Bessel function of the first kind, which is known to

decay asymptotically as t�1/2. This is consistent with the expected ballistic dynamics

of Bloch electrons in a periodic crystal. The time average of Equation (12) is

approximately the behavior calculated numerically for T¼ 1 on a 233-site
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approximant, and shown in Figure 1. Note that the fine wiggles that are barely seen
at very early times are associated with the first few zeros of the Bessel function, and
are not log-periodic oscillations. Log-periodic oscillations appear for T4 1 as a
result of the multifractal nature of the Fibonacci spectrum, for similar reasons as in
the calculation of the partition function (9) [36,37]. A more detailed analysis of
Equation (11) for T4 1 is required to quantitatively characterize the spectral
properties of the log-periodic oscillations, which we have discovered here by
numerical means.

Log-periodic oscillations in the specific heat of Fibonacci quasicrystals near zero
temperature are difficult to observe experimentally. The discovery of log-periodic
oscillations in the quantum dynamics of wavepackets in Fibonacci quasicrystals
should open new possibilities for the actual experimental observation of this unique
phenomenon. A particular realization could be in optical experiments that allow one
to observe the dynamics of wavepackets within one-dimensional [41], as well as two-
dimensional [42], photonic quasicrystals. Thus, we hope that our numerical
observations here will stimulate further studies, analytical and experimental alike.
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