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Understanding the electronic properties of quasicrystals, in particular the
dependence of these properties on dimension, is among the interesting open
problems in the field of quasicrystals. We investigate an off-diagonal tight-
binding hamiltonian on the separable square and cubic Fibonacci quasicrystals.
We use the well-studied Cantor-like energy spectrum of the one-dimensional
Fibonacci quasicrystal to obtain exact results regarding the transitions between
different spectral behaviours of the square and cubic quasicrystals. We use
analytical results for the addition of one-dimensional spectra to obtain bounds on
the range in which the higher-dimensional spectra contain an interval as
a component. We also perform a direct numerical study of the spectra, obtaining
good results for the square Fibonacci quasicrystal, and rough estimates for the
cubic Fibonacci quasicrystal.

Keywords: Fibonacci quasicrystals; electronic spectra; electronic transport;
quasicrystals

1. Background and motivation

As we celebrate the Silver Jubilee of the 1982 discovery of quasicrystals [1], and highlight
the achievements of the past two and a half decades of research on quasicrystals, we are
reminded that there still remains a disturbing gap in our understanding of their electronic
properties. Among the open questions is a lack of understanding of the dependence of
electronic properties – such as the nature of electronic wavefunctions, their energy spectra,
and the nature of electronic transport – on the dimension of the quasicrystal. In an attempt
to bridge some of this gap, we [2,3] have been studying the spectrum and electronic
wavefunctions of an off-diagonal tight-binding hamiltonian on the separable
n-dimensional Fibonacci quasicrystals1 [4]. The advantage of using such separable
models, despite the fact that they do not occur in nature, is the ability to obtain exact
results in one, two, and three dimensions, and compare them directly to each other. Here
we focus on the energy spectra of the two-dimensional (2D) and three-dimensional (3D)
Fibonacci quasicrystals to obtain a quantitative understanding of the nature of the
transitions between different spectral behaviours in these crystals, as their dimension
increases from 1 up to 3. In particular, we consider the transitions between different
regimes in the spectrum, taking into account the existence of a regime in which the
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spectrum contains both continuous intervals and nowhere dense parts as components.
These different behaviours of the higher-dimensional spectra are expected to reflect on the
physical extent of the electronic wavefunctions, as well as on the dynamics of electronic
wave packets, and are therefore of great importance in unravelling the electronic
properties of quasicrystals in general.

Recall [2] that the off-diagonal tight-binding model assumes equal on-site energies
(taken to be zero), and hopping that is restricted along tile edges, with amplitude 1 for long
(L) edges and T for short (S ) edges, where we take T� 1. The Schrödinger equation for the
square Fibonacci quasicrystal in 2D (with obvious extensions to higher dimensions) is then
given by

T nþ1�ðnþ 1,mÞ þ T n�ðn� 1,mÞ þ Tmþ1�ðn,mþ 1Þ þ Tm�ðn,m� 1Þ ¼ E�ðn,mÞ, ð1Þ

where �(n,m) is the value of a 2D eigenfunction on a vertex labelled by the two integers n
and m, and E is the corresponding eigenvalue. The hopping amplitudes Tj are equal to 1 or
T according to the Fibonacci sequence {Tj}¼ {1,T, 1, 1,T, 1,T, 1, 1,T, 1, 1,T, 1,T, 1, 1,T,
1,T, . . .}. By prohibiting diagonal hopping, the resulting high-dimensional eigenvalue
problem is ensured to be separable. This allows one to use the known solutions for the
one-dimensional (1D) problem [7–14] in order to construct the solutions in two and higher
dimensions (as was done for similar models in the past [15–21]). Two-dimensional
eigenfunctions can therefore be expressed as Cartesian products of the 1D eigenfunctions
[3], and the corresponding 2D eigenvalues are given by pairwise sums of the
1D eigenvalues.

The 1D spectrum for the Nth order Fibonacci approximant is composed of FN bands,
where FN¼FN�1þFN�2 is the Nth Fibonacci number, starting with F0¼F1¼ 1. The edges
of each such band correspond to either periodic or antiperiodic boundary conditions.
Hence, by direct diagonalization of the two corresponding hamiltonians for a single
approximant we obtain the edges of the energy intervals in the spectrum. The 2D and
3D spectra are then calculated as the Minkowski sums of two or three 1D spectra, where
the Minkowski sum of two sets A and B is the result of adding every element of A to every
element of B, i.e. the set

Aþ B ¼ xþ y j x 2 A, y 2 B
� �

: ð2Þ

Although the spectrum of the 1D Fibonacci model, for any choice of T 6¼ 1, is a totally
disconnected set with zero bandwidth and an infinite number of bands, the higher-
dimensional spectra exhibit different behaviour for different values of the relative hopping
parameter T, including spectra that contain continuous intervals and have a finite measure
[2]. A similar situation arises in the case of the well-known ternary Cantor set [22], which is
constructed iteratively by starting with the closed interval [0,1], and at each iteration
removing the open middle thirds of all remaining closed intervals from the
previous iteration. The first few approximants that are obtained in this way are
C0¼ [0, 1], C1¼ [0, 1/3][ [2/3, 1], and C2¼ [0, 1/9][ [2/9, 1/3][ [2/3, 7/9][ [8/9, 1], so that
after N such iterations one is left with an approximant set CN consisting of 2N

closed intervals, each of which has a measure 1/3N, and therefore the total measure of the
set is (2/3)N. The ternary Cantor set itself C1, defined as the limit N!1 of this
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sequence of sets, contains uncountably-many points yet no interval, it is
totally disconnected, and its total measure is zero. By simple inspection, one finds
that for any finite order Cantor approximant CN, the Minkowski sum CNþCN is the
entire interval [0, 2]. One can show that this also holds in the limit N!1, namely that
C1þC1¼ [0, 2]. Thus, even though C1 contains no interval, its sum with itself covers the
whole interval from 0 to 2.

For a given dimension n, we identify a sequence of values 15T
ðndÞ
1 � T

ðndÞ
2 �

T
ðndÞ
3 � T

ðndÞ
4 corresponding to the following transitions in the spectrum:

T
ðndÞ
1 : The value of T below which all bands in the n-dimensional spectrum

are of positive, finite measure. For T4T
ðndÞ
1 there is at least a finite

number of zero measure bands in the spectrum.
T

ðndÞ
2 : The value of T above which the number of bands in the n-dimensional

spectrum is infinite. An infinite number of bands in a spectrum
of finite bandwidth necessarily implies that infinitely many bands are

of zero measure, thus T
ðndÞ
2 � T

ðndÞ
1 .

T
ðndÞ
3 : The value of T above which all bands in the spectrum are of zero

measure.2

T
ðndÞ
4 : The value of T above which the total bandwidth of the spectrum is

zero.

We use two different approaches to study the behaviour of the spectrum. In Section 2
we use analytical results derived for the addition of generalized Cantor sets to obtain an
upper bound on the transition between a spectrum containing an interval and a nowhere
dense spectrum. In Section 3 we use direct numerical calculation of the 2D and 3D spectra
of Fibonacci approximants of finite order to extrapolate for the behaviour in the
quasiperiodic limit. In an earlier paper [3] we studied only two of the transitions, T

ðndÞ
2 and

T
ðndÞ
4 . To find T

ðndÞ
4 we used a naive method based on the results of Ashraff et al. [21] for

the diagonal tight-binding hamiltonian. The current results include a correction to our
previous calculation. In Section 4 we summarize the results, and discuss their expected
relation to the nature of eigenfunctions and to quantum dynamics, indicating directions
for future work.

2. Analytical bounds for the appearance of continuous intervals in the spectrum

2.1. Addition of generalized Cantor sets – Known results

A generalized Cantor set is obtained just like the ternary Cantor set except that the open
intervals removed at each iteration are not necessarily the middle thirds of the remaining
closed intervals. For each interval removed from the set, one defines a left (right) ratio of
dissection as the ratio between the length of the left (right) remaining interval and the
length of the original one. Sets for which the left and right ratios are the same are called
central Cantor sets. In general, the ratios of dissection may vary between the left and right
resulting intervals, between different iterations of the process, and between different
intervals at the same step. The ternary Cantor set is a central Cantor set with a constant
ratio of dissection of 1/3.
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We are interested in conditions for the appearance of intervals in the Minkowski sum

of n generalized Cantor sets. For central Cantor sets with a constant ratio of dissection a,

one can show that the condition for the sum to be an interval is

n
a

1� a
� 1 or a �

1

nþ 1
: ð3Þ

Thus, the ternary Cantor set exactly has the critical value of a¼ 1/3 for which a sum of

n¼ 2 central Cantor sets is an interval. Cabrelli et al. [23] found, more generally,

a sufficient condition for the existence of an interval in the sum of n generalized Cantor

sets, all of which can be constructed with a lower bound a on their ratios of dissection,

which is given by

ðn� 1Þ
a2

ð1� aÞ3
þ

a

1� a
� 1: ð4Þ

2.2. Applying Cantor set results to the Fibonacci spectra

Before using the results quoted above to analyse the Fibonacci spectra, we should note

that there exist two important differences between the energy spectra SN of the Nth order

approximants of the 1D Fibonacci quasicrystal, and finite approximants CN of generalized

Cantor sets. The spectrum SN consists of FN rather than 2N energy intervals, and is not

contained in the spectrum SN�1 of the approximant of order N�1. The latter implies that

one should take care in defining the proper limit that yields the spectrum S of the

Fibonacci quasicrystal itself. Such a definition was given by Süto00 [24] (see also Damanik

[25]) as

S ¼
\1

N¼1

SN [ SNþ1ð Þ: ð5Þ

The fact that the number of bands in SN is FN rather than 2N implies that the spectra

cannot be constructed by the iterative process described above for generalized Cantor sets,

and hence that the ratios of dissection cannot be defined. However, the spectrum SN of

a finite approximant can be padded with additional intervals which can be chosen in

a manner that will not disturb the calculation, and will increase the number of intervals to

2N, as in the Cantor approximant. This allows to calculate backwards and define effective

ratios of dissection. The additional intervals can be added on either, or both, ends of the

spectrum. Thus, the effective ratios of dissection are not uniquely determined.
We have tried using Equation (4) to find a sufficient condition for the

higher-dimensional spectra to contain an interval. This would provide a lower bound

on T
ðndÞ
3 – a value of T below which the condition is satisfied and the n-dimensional

spectrum necessarily contains an interval. Unfortunately, as one studies the effective

ratios of dissection defined for the 1D spectrum it turns out that regardless of the way

in which the approximant spectra are embedded in Cantor approximants, the ratios

of dissection are not bounded away from zero, even for small values of T, as shown

in Figure 1a. Hence, at this point we do not know how to use the condition of

2264 S. Even-Dar Mandel and R. Lifshitz

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
l
 
A
v
i
v
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
2
0
:
5
2
 
1
1
 
O
c
t
o
b
e
r
 
2
0
0
8



Cabrelli et al. to obtain a lower bound on T
ðndÞ
3 . Nevertheless, by studying the maximal

effective ratio of dissection we can obtain an upper bound for the value of T
ðndÞ
3 above

which the higher-dimensional spectra do not contain an interval. This is due to the fact
that values of T, for which the maximal ratio of dissection fails to satisfy Equation (3),
imply that there is no portion of the 1D spectrum which can lead to the existence of an
interval in the higher-dimensional spectra. Figure 1b shows the effective maximal ratio
for approximants of order N¼ 5 (FN¼ 8) to N¼ 14 (FN¼ 610). It is evident that the
maximal ratio of dissection rapidly converges as a function of the order of the
approximant, with almost no difference between the the curves for N¼ 9 and above.
It is also of interest to note that the maximal ratio is independent of the way in which
the approximant spectrum is embedded in a Cantor approximant. The maximal ratio of
dissection becomes 1/3 at T’ 3.15 and 1/4 at T’ 4.2. Thus, we expect to see the
vanishing of intervals in the spectrum at a value of T below these upper bounds for
2D and 3D, respectively.

3. Direct study of the 2D and 3D spectra

We now turn to the direct study of the higher-dimensional spectra. This is done
by explicitly calculating the spectra for approximants of finite order. Each pair or
triplet of energy bands in the 1D spectrum is summed to yield a single band in the
2D or 3D spectrum, respectively. A set of FN bands in the 1D spectrum generates
(FNþ 1)FN/2 bands in the corresponding 2D spectrum, and (FNþ 2)(FNþ 1)FN/6
bands in the 3D spectrum, with possible overlaps that decrease as T increases.
Overlapping bands are merged into single energy intervals to obtain the
actual structure of the higher-dimensional spectra. Note that we shall use the
term ‘bands’ to refer to the continuous energy intervals in the spectra,
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Figure 1. (a) The minimal effective ratio of dissection calculated for the 1D spectra of approximants
of order 12–14 for values of T up to 1.5. The sharp drop near T¼ 1 means that no value of T satisfies
the sufficient condition for obtaining an interval in the higher-dimensional spectra. (b) The maximal
effective ratio of dissection calculated for the 1D spectra of approximants of order 5–14 for values of
T up to 6. The horizontal dotted lines are drawn at 1/3 and 1/4 to indicate the upper bounds for the
value of T at which no intervals are to appear in the 2D and 3D spectra, respectively.
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even though strictly speaking they may be composed of different bands with

overlapping energies.

3.1. Measuring the smallest band in the spectrum to find T
ðndÞ
1

For T4T
ðndÞ
1 there is at least one zero-measure band in the spectrum. We therefore

measure the smallest band Bmin and ask whether it vanishes in the limit of N!1.

For T5T
ðndÞ
1 the length of the smallest band is independent of the order N of the

approximant. For T4T
ðndÞ
1 it can be described by a power law Bmin / F

��nðT Þ

N with some

positive exponent, �n(T ). We locate T
ðndÞ
1 by finding the value of T for which �n vanishes.

Figure 2b clearly shows that 1:65T
ð2dÞ
1 5 1:8, and Figure 2d indicates that

25T
ð3dÞ
1 5 2:6. Within these bounds, the width of the smallest band oscillates between

the two different limiting behaviours.
As T increases and the overlap of bands vanishes, the smallest band in the

n-dimensional spectrum is expected to be n times the smallest band of the 1D spectrum.

Hence for high values of T the exponents �n(T ) should be independent of

the dimension, because the multiplicative factor of n only adds a constant term in the
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Figure 2. The length of the smallest band Bmin in the spectrum of the 2D (top) and the 3D (bottom)
Fibonacci quasicrystals. The length of the smallest band is plotted on the left as a function of T for
different approximants, and on the right as a function of N for different values of T. The linear
slopes in the semi-logarithmic plots as a function of N indicate a power law behaviour,
Bmin � �

�N�nðT Þ, where � is the golden mean. The exponents �n(T ) are plotted in Figure 3.
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semi-logarithmic scale. Figure 3 shows the extracted exponents �n(T ), indicating that they

indeed coincide for all values of T above T
ðndÞ
1 . For the periodic case (T¼ 1), the spectrum

consists of a single band whose width is approximately 2n(1þT )¼ 4n independent of the

order of approximant and hence Bmin(T¼ 1)’ 4n independent of the dimension, and

�n(T¼ 1)¼ 0.

3.2. Counting the number of bands to find T
ðndÞ
2

Next we count the number of bands #Bn in the spectrum and ask whether it tends to

infinity or remains finite as N increases. Again, we express this number as a power law

of the form #Bn / F
�nðT Þ

N , expecting �n(T ) to vanish for T5T
ðndÞ
2 . The existence of

such exponents is supported by the linear slopes of the curves in the semilogarithmic

plots of Figure 4. For the 1D Fibonacci quasicrystal #B1¼FN/ �N, where � is the

golden mean. In higher dimensions, as the overlap between bands decreases with

increasing T, we expect the number of bands to tend to its maximal value, which is

approximately (#B1)
2/2 in 2D, and approximately (#B1)

3/6 in 3D. Thus the exponents

�n(T ) should tend to n log � as T!1. The dashed horizontal line in Figure 5 indicates

the expected limit value for the 2D model which indeed tends to it. For the 3D model

the limit is only obtained at significantly higher values of T, indicating that the overlap

of bands plays a significant role in the structure of the spectrum even at relatively high

values of T. The continuous variation of �2(T ) allows us to use smooth extrapolation

and find T
ð2dÞ
2 ’ 1:66, whereas in 3D we can only conclude that 2:05T

ð3dÞ
2 5 2:6.

Combining the fact that T
ðndÞ
2 � T

ðndÞ
1 with the results for the exponents �n(T ) as shown

in Figure 5, we find that at least in 2D and 3D, T
ðndÞ
2 ¼ T

ðndÞ
1 , and hence that there is

no intermediate regime in which the spectrum contains only a finite number of

zero-measure bands. For the periodic case #Bn¼ 1 and hence for T¼ 1, �n¼ 0

independent of the dimension.
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Figure 4. The number of bands #Bn in the spectrum of the 2D (top) and the 3D (bottom) Fibonacci
quasicrystals. The number of bands is plotted on the left as a function of T for different
approximants, and on the right as a function of N for different values of T. The linear slopes in the
semi-logarithmic plots as a function of N indicate a power law behaviour, #Bn / �N�nðT Þ.
The exponents �n(T ) are plotted in Figure 5.
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3.3. Measuring the largest band in the spectrum to find T
ðndÞ
3

For T4T
ðndÞ
3 all bands in the spectrum have zero measure. We therefore look at the width

of the largest band in the spectrum and ask whether it vanishes as N!1. However, since
the maximal energy in the spectrum is approximately n(1þT ), for small values of T the
overlap of bands leads to an increase in the width of largest band as a function of T.
To avoid this we normalize the results, dividing by the maximal energy in the spectrum.
Thus, for T4T

ðndÞ
3 , we express the normalized largest band as a power law Bmax / F��nðT Þ

n .

Figures 6b and 7 clearly indicate that T
ð2dÞ
3 ’ 2, but in 3D oscillatory behaviour dominates

a large range of values for T, and we cannot determine the transition without extending the
analysis to higher order approximants. However, from Figure 6d we can infer that the
transition occurs at some value of T below 5, for which we obtained analytically a stricter
upper bound of T

ð3dÞ
3 � 4:2 as shown in Figure 1b.

As for Bmin, at large values of T, Bmax is also expected to be n times the largest band of
the 1D spectrum, and hence the exponents should be independent of dimension. The fact
that this does not occur indicates, once again, that the overlap of bands is still significant
for values of T as large as 6. At the periodic limit T¼ 1 the spectrum consists of a single
band and hence Bmax(T¼ 1)’ 4n independent of the order of approximant and
�n(T¼ 1)¼ 0.
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Figure 6. The normalized length Bmax of the largest band in the spectrum of the 2D (top) and the 3D
(bottom) Fibonacci quasicrystals. Bmax is plotted on the left as a function of T for different
approximants, and on the right as a function of N for different values of T. The linear slopes in the
semi-logarithmic plots as a function of N indicate a power law behaviour, Bmax / ��N�nðT Þ.
The exponent �2(T ) is plotted in Figure 7.
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3.4. Calculating the total measure of the spectrum to find T
ðndÞ
4

To find T
ðndÞ
4 we measure the total bandwidths of the spectra as N increases, normalizing

by n(1þT ), and looking for a power law decay of the normalized bandwidth W / F
��nðT Þ

N .

Figure 8c shows a decrease in the normalized total measure of the spectrum as a function

of T in 2D, but Figure 8d shows the total measure in 3D to be almost independent of N for

any given value of T. Thus, although the 3D spectrum consists only of zero measure bands

for values of T above 5, its total measure remains finite over the entire range of T values

studied. The exponents �n(T ) are shown in Figure 9. The transition to zero total

bandwidth in 2D occurs at T
ð2dÞ
4 ’ 2:6. In 3D we can only say that T

ð3dÞ
4 4 6. At the

periodic limit T¼ 1 the spectrum consists of a single band and hence W(T¼ 1)’ 4n

independent of the order of approximant and �n(T¼ 1)¼ 0.

4. Summary and future work

The results of Sections 2 and 3 are summarized as follows

T
ðndÞ
1 ¼T

ðndÞ
2 T

ðndÞ
3 Upper bound for T

ðndÞ
3 T

ðndÞ
4

2D �1:66 �2 3:15 �2:6

3D 2:0�2:6 �5 4:2 46

ð6Þ

The transitions between different regimes in the spectrum are expected to reflect on the

physical properties of the Fibonacci quasicrystals, on the nature of eigenfunctions and

on the dynamics of electronic wave packets. For values of T above the transition T
ðndÞ
3
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Figure 7. The exponent �2(T ) extracted from Figure 6 and compared with �1(T ). The asymptotic
behaviour in which the curves are expected to coincide is not observed for the values of T shown.
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Figure 8. The normalized total bandwidth W of the spectrum of the 2D (top) and the 3D (bottom)
Fibonacci quasicrystals. W is plotted on the left as a function of T for different approximants, and
on the right as a function of N for different values of T. The linear slopes in the semi-logarithmic
plots as a function of N indicate a power law behaviour, W / ��N�nðT Þ. The exponents �n(T ) are
plotted in Figure 9.
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Figure 9. The exponents �n(T ), extracted from Figure 8. In 3D it is evident that the transition to zero
bandwidth does not occur within the studied range of T values.
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the higher-dimensional spectra are similar to the 1D spectrum in being totally

disconnected, nowhere dense sets, and hence the eigenfunctions are expected to be

critical, and wave packets are expected to display sub-ballistic dynamics, as happens in

the 1D case. Note that the last transition T
ðndÞ
4 is of no consequence for this matter

because the spectrum is nowhere dense both above and below this value. For values of

T below the lowest transition point T
ðndÞ
1 ¼ T

ðndÞ
2 , where the spectra are composed of

intervals, as in the periodic case, we expect to find extended eigenfunctions, and wave

packets are expected to display ballistic dynamics. For the intermediate range between

these transitions the spectra contain both intervals and nowhere dense parts, and

therefore we expect to find mixed ballistic and sub-ballistic dynamics, and some of the

wavefunctions to be extended.
We intend to complement these studies by simulating the dynamics of electronic

wavefunctions to find whether transitions between ballistic and sub-ballistic dynamics

occur at the points found here. We also intend to use the degeneracy of wavefunctions in

the 2D Fibonacci quasicrystal (as hypothesized in [2]) to construct maximally extended

wavefunctions; again, we expect to find some qualitative change in the nature of these

wavefunctions near the transition points indicated above.
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Notes

1. The reader is referred to [5,6] for precise definitions of the terms ‘crystal’ and ‘quasicrystal’.
2. Note that the absence of intervals in the spectrum above T

ðndÞ
3 does not necessarily correspond

to zero total bandwidth. It is in fact possible to use the Cantor set generation process to obtain
a totally disconnected set with a finite measure. For example, if at the Nth iteration of the
generation process the middle 1/3N part is removed from each of the remaining intervals, one
ends with a totally disconnected set whose measure is lim�1

k¼1ð1� 1=3kÞ ’ 0:5601:
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