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Dislocation dynamics in a dodecagonal
quasiperiodic structure
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We have developed a set of numerical tools for the quantitative analysis of defect
dynamics in quasiperiodic structures. We have applied these tools to study
dislocation motion in the dynamical equation given by Lifshitz and Petrich in
1997, the steady-state solutions of which include a quasiperiodic structure with
dodecagonal symmetry. Arbitrary dislocations, parameterized by the homotopy
group of the D-torus, are injected as initial conditions and quantitatively followed
as the equation evolves in real time. We show that for strong diffusion the results
for dislocation climb velocity are similar for the dodecagonal and the hexagonal
patterns, but that for weak diffusion the dodecagonal pattern exhibits a unique
pinning of the dislocation reflecting its quasiperiodic structure.

1. Introduction

It was realized long ago that dislocations play an important role in determining the
mechanical properties of a crystal—whether periodic or not. As a consequence, ever
since the discovery of quasicrystals much effort has been invested in the experimental
and the theoretical study of their dislocations [1–3], leading to interesting
observations such as the special role played by phasons in the motion of dislocations.

Here we study the behaviour of dislocations in a model system based on the
dynamical equation of Lifshitz and Petrich (LP) [4], which is modification of the
well-known Swift–Hohenberg (SH) equation [5]. The dynamics of the LP equation
is relaxational, @t� ¼ �dF=d�, driving a continuous two-dimensional density field
�(x, y, t) towards a minimum of a Lyapunov functional, or ‘effective free energy’,
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yielding a dynamical equation of the form
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Among their results, LP showed that, if q¼2cos (p/4), q¼ 2cos (p/6), or q¼ 2cos(p/12)
and " is sufficiently small, stable steady-state patterns are obtained (from random
initial conditions) with long-range order and square, hexagonal or dodecagonal
symmetry respectively. Although the LP equation cannot describe the dynamics
of real solid-state quasicrystals and is probably more appropriate for soft matter
or fluid phenomena such as Faraday waves, it offers a unique opportunity for the
quantitative study of dislocations in a system (exhibiting both periodic and
quasiperiodic long-range order) whose dynamics is exactly known.

2. Injection and tracking of dislocations

The Lyapunov functional F in equation (1) is clearly invariant under any
translation or rotation of space. The steady-state solutions that are obtained are
symmetry-broken ground states of F , whose Fourier transform has the form

�ðrÞ ¼
X
k2L

�ðkÞ eik�r, ð3Þ

where the (reciprocal) lattice L is a finitely generated Z module; that is, it can be
expressed as the set of all integral linear combination of a finite number D of
d-dimensional wave vectors. In the special case where D, called the rank of the
structure, is equal to the physical dimension d, the structure is periodic.

Any particular ground state �ðrÞ of F is indistinguishable from a whole set of
ground states that are related by so-called gauge transformations

8k 2 L : �0ðkÞ ¼ e2pi�ðkÞ�ðkÞ, ð4Þ

where �(k), called a gauge function, has the property that �ðk1 þ k2Þ ¼ �ðk1Þ þ �ðk2Þ,
possibly to within an additive integer, whenever k1 and k2 are in L. As described in
detail by Dräger and Mermin [6], gauge functions form a vector space V* of all real-
valued linear functions on the lattice L. Because L has rank D, any linear function is
completely specified by giving its values on D integrally independent lattice vectors.
The space V* is therefore a D-dimensional vector space over the real numbers. The
space V* contains, as a subset, all the integral-valued linear functions on L, denoted
by L*. Gauge functions in L* leave the ground-state density invariant. Gauge func-
tions that belong to the quotient space V*/L* take the ground stage described by �
into a different and yet indistinguishable ground state described by some other
density function �0. Thus, one can parameterize all the related ground states of F
on a simple D-torus, namely the order parameter space V*/L*.

With this in mind we can easily construct a general dislocation in a two-
dimensional periodic or quasiperiodic density. As we traverse in a loop around the
position of the dislocation, say the origin, we locally change the ground state �(r) by
a gradually varying gauge function which winds around the ith direction of the
D-torus ni times and returns back to the original point. This is most readily accom-
plished by using an angle-dependent local gauge function ��ðkÞ that assigns to the ith
basis vector b(i) of L the value ni�. Thus, the most general dislocation is
characterized by a set of D integers (n1, . . . , nD), which for a periodic crystal reduces
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to the familiar d-dimensional Burgers vector. Not surprisingly, the set of all
dislocations forms a rank-D Z module, the so-called homotopy group of the
D-torus [7]. Examples of dislocations (injected in this manner into the square and
dodecagonal ground states of the LP equation (2)) are shown in figure 1 after a short
relaxation time.

Once injected into the structure, the positions of dislocations are tracked
numerically, as demonstrated in figure 1, by filtering individual pairs of Bragg
peaks in the Fourier transform and then performing an inverse Fourier transform
to visualize the dislocations present in each individual density wave. This allows us
to follow the positions of the dislocations in real time and to obtain quantitative
measurements of their velocities as described below.

3. Dislocation dynamics under stress

We apply external stress on a structure containing a single dislocation by squeezing
it in a particular direction and then allowing it to evolve under the dynamics of the
LP equation. We quantify the amount of stress by the change dq in the wavenumber
of the fundamental density wave in the direction of the applied stress, relative to its
wavenumber in the relaxed steady-state density. We have calculated elsewhere [8],
using the approaches of Siggia and Zippelius [9] and of Tesauro and Cross [10], that
under such circumstances with the parameters used in our simulation the dislocation
should climb with a velocity which is linear in the stress dq and is proportional to the
parameter c, playing the role of a generalized diffusion coefficient. This should be
contrasted with the fact that for dynamics governed by the SH equation [5] the climb
velocity is proportional to dq3/2.

Figure 1. Top left (in both figures), snapshot of the numerical solution of the LP equation (2)
showing a square and a dodecagonal pattern, a short time after a dislocation has been injected;
bottom left, Fourier transform of the pattern (note the fuzzy Fourier coefficients, containing
the information of the angle-dependent local gauge transformation); bottom right, a pair of
filtered fuzzy Bragg peaks; top right, inverse Fourier transform of the filtered peaks showing
the dislocation.
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(a)

(b)

(c)

Figure 2. Measurement of dislocation climb velocity under stress for large values of the
diffusion constant c. (a) Position of a dislocation core in a dodecagonal pattern as a function
of time under LP dynamics; (b) Dependence of dislocation climb velocity on the applied stress,
where v / dq3=2 for SH dynamics, and v / dq for LP dynamics; (c) Dependence of the dis-
location climb velocity on the diffusion constant c under LP dynamics for different patterns.
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Figure 2 summarizes our measurements of dislocation velocities obtained using
the automatic numerical procedure for tracking the dislocation, described above.
Figure 2(a) shows the position of a dislocation as a function of time for different
values of stress dq, as measured under the dynamics of the LP equation for a
dodecagonal pattern. For sufficiently large values of the diffusion constant c the
dislocation climbs at a relatively constant speed, which indeed varies linearly with
the applied stress, as shown in figure 2(b).

Figure 2(c) compares the measurements for different steady-state solutions of
the LP equation. We find that the stripe pattern is the easiest for dislocation climb,
with the climb velocity v� 45c dq, and that the square pattern is the most resistant,
with v� 3c dq. Interestingly, the proportionality constants for the hexagonal and the
dodecagonal patterns are very similar, with v� 25c dq. A possible explanation might
be that the two triplets of wave vectors making up the dodecagonal pattern act
independently as two hexagonal patterns during the climb process.

4. Dislocation dynamics under stress in the limit of weak diffusion

As the value of the diffusion constant c decreases, the local features of the pattern
become important and the dislocation no longer climbs at a constant rate. In a
periodic pattern, such as the square or the hexagonal densities, the motion of the
dislocation nearly comes to a stop at regularly spaced positions, or pinning sites, as
shown by the lower curve of figure 3. These sites correspond to positions where
peaks in the density must first be annihilated before the dislocation can continue
in its climb. In the quasiperiodic dodecagonal pattern a qualitatively different beha-
viour occurs in which the dislocation is pinned at irregular intervals, as shown by the
upper curves of figure 3. It seems likely that, because the quasiperiodic pattern

Figure 3. Periodic pinning of a dislocation in a square and a hexagonal pattern for a small
value of the diffusion constant c (lower curve) and irregular pinning of a dislocation in a
dodecagonal pattern due to the lack of periodicity (upper curves).

Dislocation dynamics in dodecagonal quasiperiodic structure 1063



contains different local environments, the dislocation is more strongly pinned at
certain sites than others, and these sites never quite repeat. This phenomenon has
been observed in other models of dislocation motion by Mikulla et al. [11] and
Fradkin [12].
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