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Photonic Quasicrystals for Nonlinear Optical Frequency Conversion
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We present a general method for the design of 2-dimensional nonlinear photonic quasicrystals that can
be utilized for the simultaneous phase matching of arbitrary optical frequency-conversion processes. The
proposed scheme—based on the generalized dual-grid method that is used for constructing tiling models
of quasicrystals—gives complete design flexibility, removing any constraints imposed by previous
approaches. As an example we demonstrate the design of a color fan—a nonlinear photonic quasicrystal
whose input is a single wave at frequency ! and whose output consists of the second, third, and fourth
harmonics of !, each in a different spatial direction.
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FIG. 1 (color online). The color fan.
The problem of phase matching in the interaction of
light waves in nonlinear dielectrics became immediately
evident as the first theories describing such interaction
were developed [1]. Put simply, nonlinear interaction is
severely constrained in dispersive materials because the
interacting photons must conserve their total energy and
momentum. Even the slightest wave-vector mismatch ap-
pears as an oscillating phase that averages out the outgoing
waves, hence the term ‘‘phase mismatch.’’ One approach
for treating the problem uses the birefringent properties of
specific materials and by playing with the polarizations of
the interacting waves achieves phase matching [2,3]. A
second approach, suggested over 4 decades ago [1,4] and
known today as ‘‘quasi–phase matching,’’ is to modulate
the sign of the relevant component(s) of the nonlinear
dielectric tensor at the period of the oscillating mismatched
phase, thereby undoing the averaging. Quasi–phase
matching has been generalized from simple 1-dimensional
periodic modulation [5] to 2-dimensional periodic modu-
lation [6–10] as well as 1-dimensional quasiperiodic
modulation [11–14], allowing greater flexibility in phase-
matching multiple frequency-conversion processes within
the same photonic crystal. Here we present the full general-
ization of the method that enables the design of nonlinear
photonic crystals that can simultaneously phase match any
arbitrary set of frequency-conversion processes in any
spatial direction. This design flexibility is ideal for the
realization of elaborate multistep cascading effects
[15,16], as demonstrated by the color fan example
(Fig. 1) at the end of this article.

To understand how the method works it is convenient to
adopt the view taken in condensed matter systems. Recall
that momentum conservation is a direct consequence of
having continuous translation symmetry. In crystals,
whether periodic or not, continuous translation symmetry
is broken, and momentum conservation is replaced by the
less-restrictive conservation law of crystal momentum. The
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total momentum of any set of interacting particles in a
crystal—whether they are electrons, phonons, or pho-
tons—need only be conserved to within a wave vector
from the reciprocal lattice of the crystal, giving rise to
so-called umklapp processes. Thus, all one needs to do is
to construct an artificial photonic crystal whose nonlinear
susceptibility is ordered on the appropriate length scale
such that its reciprocal lattice contains all the necessary
wave vectors, needed to phase match any required
frequency-conversion process. The linear susceptibility
should remain constant in space so that the dispersion
relation will not vary from point to point. We show here
a method—borrowed from the theory of quasicrystals
[17]—to construct ordered structures in real space with
any given Fourier components. Such structures are in
general quasiperiodic, thus we are concerned here with
the design of nonlinear photonic quasicrystals (for a defi-
nition of the term see the discussion in Ref. [18]).

To be more specific, consider, for example, two incom-
ing waves �!1;k1� and �!2;k2� interacting in the plane of
a 2-dimensional dielectric whose total area is A, via its
lowest-order nonlinear susceptibility tensor ��2�, to pro-
duce an outgoing wave �!3;k3�, with!3 � !1 �!2 and a
wave-vector mismatch �k � k1 � k2 � k3. Assuming
negligible depletion of the input waves, the amplitude of
the outgoing wave as it emerges from the interaction region
A is
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E3��k� � �
Z
A
g�r�ei�k�rd2r; (1)

where � is a constant that depends on the amplitudes of the
incoming waves and on the indices of refraction of all three
waves, and g�r� is the relevant component of ��2�, coupling
the three waves. Clearly, if g is independent of r the
oscillating mismatched phase averages out the output sig-
nal. For a rectangular A, this would give a two-dimensional
sinc function—where sinc��� � sin���=� and
sinc��;�� � sinc���sinc���—that tends to a delta func-
tion ���k� as the interaction area A tends to infinity. In
general, the efficiency of the frequency-conversion pro-
cess, given by the output signal E3��k�, is proportional to
the Fourier transform of g�r�’A�r�, where ’A�r� is the
characteristic function of the interaction area A (equal to
1 if r 2 A, and 0 otherwise). We can design this Fourier
transform to peak at �k by ensuring that �k is a vector in
the reciprocal lattice of g�r�.

Consider more generally a set of D nonlinear interac-
tions of triplets of waves, coupled by ��2� as in (1), with D
2-dimensional wave vectors �k�j� [j � 1; . . . ; D] describ-
ing their mismatches. We wish to design a nonlinear pho-
tonic crystal g�r� that will simultaneously phase match all
D interactions. If, by accident, all D mismatch vectors can
be expressed as integral linear combinations of two of them,
�k�1� and �k�2�, one can view these two vectors as the
basis of a 2-dimensional reciprocal lattice. One then finds
the dual real-space basis vectors a�1� and a�2� whose recip-
rocal vectors are �k�1� and �k�2� through the condition

a �i� ��k�j� � 2��ij; (2)

and generates a real-space lattice consisting of points at all
integral linear combinations of a�1� and a�2�. The Fourier
transform of a set of delta functions at these lattice posi-
tions is a set of delta function at all the reciprocal lattice
positions generated by integral linear combinations of the
two mismatch wave vectors, as required. This is the pro-
cedure that has been used until now [6–9].

In general, when the mismatch vectors do not all belong
to a reciprocal lattice of a periodic crystal, we need to
construct a quasicrystal whose Fourier transform contains
all the mismatch vectors. To do so we use a generalized
version of de Bruijn’s dual-grid method [19–22] used for
the construction of tiling models of quasicrystals. We begin
by selecting a set of D 2-dimensional real-space vectors
a�j� [j � 1; . . . ; D], called tiling vectors. We use a general-
ization of the orthogonality condition (2), known as the Ho
condition [23],

XD
j�1

a�j�� �k�j�� � 2����: (3)

Note that in the special case of a periodic structure the Ho
condition (3) is simply the completeness relation that
follows from the orthogonality condition (2) used to define
the reciprocal vectors. If we were now simply to generate
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all points at integral linear combinations of the D tiling
vectors we would get the unwanted outcome of a dense
filling of real space. To avoid this situation we construct the
dual grid, whose topology determines which of the integral
linear combination of the tiling vectors are to be included
in the tiling.

To construct the dual grid we associate with each mis-
match vector �k�j� � 2�n�j�=Lj an infinite family of par-
allel lines normal to the unit vector n�j�, separated by a
distance Lj, and shifted from the origin [in the direction of
�n�j�] by an amount fjLj, for some chosen set of grid
shifts 0 � fj < 1. This grid is dual to the tiling in the sense
that each intersection of lines in the grid corresponds to a
tile in the tiling whose edges are the tiling vectors a�j�

associated with the families of the intersecting lines. In
addition, each cell in the dual grid, labeled by D integers
nj, determines a vertex in the tiling at position

P
jnja

�j�,
where nj is the number of lines of the jth family separating
the cell from the origin. Only those linear combinations
that correspond to cells in the dual grid are included in the
tiling.

The canonical choice of tiling vectors in Ref. [21]
section IV.C, which is convenient for the analytical
calculation of the Fourier transform, is obtained by
viewing the D 2-dimensional mismatch vectors as 2
D-dimensional vectors ��k�1�� ; . . . ;�k�D�� � [� � 1; 2]
spanning a 2-dimensional subspace of a D-dimensional
vector space. One can then choose D� 2 additional
D-dimensional vectors �q�1�� ; . . . ; q�D�� � [� � 3; . . . ; D], or-
thogonal to the first two, spanning the remaining �D�
2�-dimensional subspace. This process adds D� 2 com-
ponents to each of the mismatch vectors extending them
into the D D-dimensional vectors K�j� � ��k�j�;q�j�� that
also span the entire D-dimensional vector space. One can
then find the dual basis A�j� � �a�j�;b�j��, expanded into 2-
dimensional tiling vectors a�j� and �D� 2�-dimensional
extensions b�j�, using a D-dimensional orthogonality con-
dition

A �i� �K�j� � 2��ij; (4)

which implies a D-dimensional completeness relation

XD
j�1

A�j�� K
�j�
� � 2����; (5)

thus satisfying the Ho condition (3). Note that the choice
of the D� 2 vectors �q�1�� ; . . . ; q�D�� � is not unique, but
once these are chosen the tiling vectors a�j� and their
�D� 2�-dimensional extensions b�j� are uniquely deter-
mined by the orthogonality condition (4).

It can be shown [ [21], Eq. (5.5)] that if ��r� is a sum of
delta functions, at the positions determined by the dual-
grid method, then its Fourier transform ��k� is nonvanish-
ing at most on the lattice of integral linear combinations of
the �k�j�. If the �k�j� are linearly independent over the
1-2



TABLE I. Calculated mismatch vectors for the color fan and
the corresponding tiling vectors. The right-hand column of the
upper section lists the analytically calculated Fourier coefficients
for the three processes assuming an infinite structure and circular
positive domains of radius 6:1695 �m in a negative background.
The corresponding values obtained in a 1-dimensional periodic
crystal for first and third order processes are 2=� ’ 0:6366 and
2=3� ’ 0:2122, respectively (Ref. [5], p. 2635).

Mismatch
vector

Magnitude
in ��m��1

Direction
in radians g��k�i��

�k�1� � �k11!2 33.942 0 0.0464
�k�2� � �k22!4 93.931 0.0456 0.0363
�k�3� � �k12!3 31.768 �0:0966 0.1641

Tiling
vector

Magnitude
in �m

Direction
in radians

a�1� 30.9902 �1:4801
a�2� 54.7011 1.5001
a�3� 128.9060 �1:5289
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integers this immediately gives us Bragg peaks at the
positions required for multiple phase matching. If the
mismatch vectors are integrally dependent some of the
Bragg peaks may become extinguished. To avoid this
situation one may simply choose an independent subset
of mismatch vectors to generate the structure, whose
Fourier transform will then contain all the required Bragg
peaks. Alternatively, one may refine the procedure for
selecting the tiling vectors. We shall consider the latter
option in greater detail elsewhere. The Fourier coefficient
at k is given by

��k� �
1

v

X
eiq�f

Z
W

dseiq�s; (6)

where the sum—required only when the mismatch vectors
are linearly dependent over the integers—is over all q �P
mjq�j� such that

P
mj�k�j� � k, the shift vector f �P

fjb�j�, W is the so-called �D� 2�-dimensional window,
given by the set of all points

P
	jb�j� with 0 � 	j < 1, s is

a �D� 2�-dimensional integration vector, and v is the
volume of the primitive cell of the D-dimensional real-
space lattice generated by the vectors A�j�.

Methods for modulating the nonlinear coefficient have
been developed for many ��2� materials, and, in particular,
for ferroelectrics [24] and semiconductors [25]. Although
typically the nonlinear coefficient is modulated only in one
direction, the modulation methods are based on planar
technologies, hence 2-dimensional modulation is possible
[7]. In ferroelectrics such as LiNbO3 and KTiOPO4, the
modulation is based on reversing the electrical domains in
the z direction of the crystal, and thus provides either a
positive or negative value of the ��2�33 coefficient. In the
following calculation, we have assumed a minimum do-
main size of 2 �m, which can be achieved using the
electric field poling technique [14]. Thus the actual non-
linear crystal g�r� is extended over a finite area A, and
consists of positive domains of a given shape S, typically
small circles [8] or polygons such as hexagons [7] or
squares [10], positioned at the vertices of the tiling in a
negative background. Using the convolution theorem, its
actual Fourier transform g�k� is then

g�k� � ��
�
��k� �

Z
A
eik�rd2r

�Z
S
eik�rd2r; (7)

where �� is the absolute difference between the positive
and negative values used for ��2�33 , ��k� is the sum of delta
functions whose amplitudes are given in (6), and � is the
convolution operator. For example, if S is a circle of radius
R and A a rectangle of sides Lx 	 Ly, the Fourier transform
is

g�k��g�kx;ky�

�2SA��
J1�kR�
kR

�
��k��

�
sinc

�
kxLx

2

�
sinc

�kyLy
2

���

(8)

where k � jkj, and J1 is the first Bessel function. There is,
13390
of course, much room for fine tuning of the design pro-
cess—especially in the choice of the domain shape S—but
we have clearly demonstrated that the required mismatch
wave vectors indeed appear in the Fourier transform of the
nonlinear photonic quasicrystal. Note, in particular, for the
circle, that care must be taken in the choice of the radius R
such that the first zero of the Bessel function, occurring at
kR ’ 3:8317, does not extinguish the required Bragg
peaks.

As an example for our design procedure consider the
color fan, depicted in Fig. 1, whose input is a fundamental
beam at frequency ! in the x̂ direction and whose output
consists of the second, third, and fourth harmonics in
different directions. Note that the pair of interacting beams,
in all three frequency-conversion processes, ! and 2!, are
traveling in the same (x̂) direction to allow for efficient
interaction throughout the full length of the photonic crys-
tal. Using the experimental values for the dispersion in
lithium niobate at 150 
C, given in Ref. [26], and taking an
input beam of wavelength 	 � 1550 nm, the required
mismatch vectors and the corresponding tiling vectors,
satisfying the Ho condition (3), are given in Table I. In
order to keep all three mismatch vectors of the same
magnitude we use for the second and third processes
(2!� 2!! 4! and !� 2!! 3!) a third order
quasi-phase-matching condition, as described for example
in Ref. [5]. A section of the resulting photonic quasicrystal,
produced with these parameters using the dual-grid
method, is shown in Fig. 2. Its Fourier transform is shown
in Fig. 3, clearly showing Bragg peaks exactly at the
required positions of the mismatch vectors.

The method described in this Letter enables us to
achieve efficient frequency mixing of any arbitrary set of
input waves, in order to generate a chosen set of output
1-3
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FIG. 2 (color online). Structure of the photonic quasicrystal,
produced with the parameters of Table I. Scale is in �m, drawn
with an aspect ratio of approximately 1:20. Red arrows indicate
the three tiling vectors a�i�.
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waves with specified wavelengths and propagation direc-
tions. We have shown the implementation of the dual-grid
method for a two-dimensional modulation of the nonlinear
coefficient. The method is, of course, applicable in any
number of dimensions. The implementation in one dimen-
sion is straightforward and requires that the wave vectors
of the interacting waves, and thus the mismatch wave
vectors, are all collinear. For example, the one-dimensional
Fibonacci structure [11] can easily be generated by choos-
ing two collinear mismatch wave vectors having a ratio of

 � �1�

���
5
p
�=2 between them.

An interesting device that is enabled by the proposed
method is a nonlinear mixer that can generate the same
harmonic at several different directions. This mixer can be
highly useful for cavity-enhanced nonlinear processes,
such as resonant second harmonic generation and optical
parametric oscillation, with the unique feature that all
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FIG. 3 (color online). Numerical Fourier transform of the
crystal in Fig. 2 showing Bragg peaks at the positions of the
required mismatch vectors, as indicated by arrows. Scale is in
��m��1; intensity is in arbitrary units.
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propagation directions in the cavity contribute to the non-
linear process. In addition to the possibility of generating
multiple harmonics at multiple directions, as shown here,
some interesting applications of this method can benefit
from the possibility of generating large nonlinear phase
shifts by cascaded nonlinear processes. These applications
include generation of multicolor optical solitons, as well as
all-optical deflection and switching of light [16].
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