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Theoretical Model for Faraday Waves with Multiple-Frequency Forcing
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A simple generalization of the Swift-Hohenberg equation is proposed as a model for the pattern-
forming dynamics of a two-dimensional field with two unstable length scales. The equation is used
to study the dynamics of surface waves in a fluid driven by a linear combination of two frequencies.
The model exhibits steady-state solutions with 2-, 4-, 6-, and 12-fold symmetric patterns, similar to the
periodic and quasiperiodic patterns observed in recent experiments. [S0031-9007(97)03894-5]

PACS numbers: 47.54.+r, 47.20.Ky, 47.35.+i, 61.44.Br

Parametric excitations of surface waves have been exjuencies, and therefore the wavelengths involved in the
tensively studied since their first discovery by Faraday [1}selected pattern lie in narrow bands about two critical
over a century and a half ago. In the basic experimenwavelengths. (ii) The driving used in the experiments is
tal setup an open container of fluid is subjected to versuch that the up-down symmetry, takingo —u, is bro-
tical sinusoidal oscillations, which periodically modulate ken allowing interactions among triplets of standing plane
the effective gravity. When the driving amplitudeex-  waves to exist. These triad interactions are ahéy sta-
ceeds a critical threshold, a standing-wave instability bilizing mechanism for nontrivial patterns in our rotation-
occurs with temporal frequency one-half that of the ally invariant model equation.
driving frequency. The characteristic spatial wavelength We capture the essential dynamics with a single field
of the standing-wave pattern is selected through the disand without a priori specifying any angle-dependent
persion relationw (k) of the fluid. One typically observes interactions among critical modes. This allows for a
patterns of stripes or squares in such experiments. It imeaningful comparison of the stability of differentfold
only in recent years that a variety of additional patterns—symmetric states. We find patterns of 2-, 4-, 6-, and 12-
some with quasiperiodic rather than periodic long rangdold symmetry that are globally stable, but none with
order—have been observed [2—6]. We focus here on 8- or 10-fold symmetry, which is in agreement with the
particular set of experiments, performed by Edwards anéxperimental observations of Edwards and Fauve [3].
Fauve [3], in which a fluid was driven by a linear combi- The supercritical instability of a homogeneous state to
nation oftwo frequencies, forming periodic patterns with a striped state is often modeled by the Swift-Hohenberg
2-, 4-, and 6-fold symmetry, and quasiperiodic patternsequation [12]
with 12-fold symmetry. . 2 5 3

Previous theoretical work [6—11] has focused mainly on O = eu — (V2 + 1)%u — ', ()
a description through amplitude equations with an anglewhich is variational,
dependent interactiorB(6;;) between pairs of modes.

Such an interaction, which is either postulated or derived du=—8F/éu, (2)

from the underlying microscopic dynamics, can be chodriving the field u(x,y,7) towards a minimum of the

sen to stabilizev-fold symmetric patterns for arbitrary. Lyapunov functional (effective “free energy”)—
Muiller [10] has also used a set of two coupled partial dif-

ferential equations, where the pattern of a primary field is £ = [ 4x dy{—% eul + %[(V2 + Dul + %u“}, 3)
stabilized by coupling to a secondary field which provides
an effective space-dependent forcing. Newell and Pomeathe first term in the Lyapunov functional (3) favors the
[11] have coupled multiple fields in a similar way. In both growth of the instability whereas the quartic term is re-
cases the coupling between the different fields is achievesponsible for its saturation by providing a lower bound for
through resonant triad interactions, similar to the interac-F. The growth rate: of the instability is proportional to
tions we shall introduce below. the reduced driving amplitude — a.)/a.. The positive-
We propose a simple rotationally invariant model equa-definite gradient term is small only near the critical wave
tion, governing the dynamics of a real fieldx,y,7r), numberk. = 1, and thus inhibits the growth of any insta-
which describes the amplitude of the standing-wave patbilities with wave numbers away from this value.
tern. Our approach is different in that it searches for the If the parametric forcing is such that the— —u sym-
minimal requirements for reproducing the steady stateanetry is broken, then the Swift-Hohenberg free energy is
which are observed in the experiments of Edwards andnhodified by the addition of a cubic term,au?/3. Such
Fauve [3]. We incorporate into our model only the two a term allows triad interactions of standing plane waves to
most essential aspects of the system. (i) The dynamidswer the value off and form hexagonal patterns. The
is damped at frequencies away from the two forcing fre-analysis of the Swift-Hohenberg equation in the presence

0031-900797/79(7)/1261(4)$10.00 © 1997 The American Physical Society 1261



VOLUME 79, NUMBER 7 PHYSICAL REVIEW LETTERS 18 AcusT 1997

of this term is summarized, for example, in the review by30°. We minimize the Lyapunov functional (5) with re-

Cross and Hohenberg [13]. With single-frequency forcingspect to the Fourier coefficienig, describing four dif-

one cannot break the — —u symmetry, but with certain ferent pattern candidates: (a) a striped pattern with space

combinations of two frequencies the up-down symmetrygroupP2mm, whose Fourier spectrum contains two oppo-

is broken and triad interactions become important. site wave vectors of equal length; (b) a pattern of perfect
We model the two-frequency parametric excitation ofhexagons with space groupomm, whose Fourier spec-

a fluid by replacing the wavelength-selecting term in thetrum contains a single 6-fold star of wave vectors; (c) a

Swift-Hohenberg equation (1) by a similar term which pattern of compressed hexagons with space grLipm,

damps out all modes except those near onevofcritical ~ whose Fourier spectrum contains four vectors on one ring

wavelengths: and two vectors on the other ring; and (d) a dodecago-
gt = su — (V2 + 12V + ¢®2u + au® — i, nal pattern _vvith space groupl2mm, whose Fourier spec-

trum contains two 12-fold stars of wave vectors, one on
(4)  eachring.

The parametee can be scaled out, but we include it here We use standard methods [14] to calculgiefor each

because it is used in the numerical simulations, showRf the cases. Because all the candidate patterns have sym-

later. Other model equations with similar wavelength-mMorphic space groups [15] which are also centrosymmet-

selection properties are possible. We choose this equatidif We may always take all the Fourier coefficients on a

because it is the simplest one that incorporates the physi€iven ring to be equal and their phases may all be cho-

we are interested in—it allows two unstable length scale§€n such that they are either Or The minimization of

and contains triad interactions among the different modeghe Lyapunov functional is therefore always with respect

Since (4) can be applied to any pattern-forming systeniC N0 more than two real varlables. We find the values of

satisfying these requirements, it is not our intention tothe Lyapunov functional for the different patterns to be

provide a detailed derivation of it from any specific 1,

underlying microscopic dynamics. Fr=- 6 ° (7a)
Let us turn now to an analytic investigation of the 4

model equation (4). When bothand« are sufficiently ~ F6 = Fa—2 = — 15 (I + V1 + 15&%)

small (or ¢ sufficiently large) the wavelength selection

by the gradient term is nearly perfect and the Lyapunov _ 2 (3 + 24/1 + 156%)e* — 1 &2,

functional may be written in Fourier space as 152 10

10\?
kl=1¢ Fio=— <a> (1 +4/1 + 67&%/75)

1

AP 20 2 | B s 9
3 = _ﬁ<1 + ? 1 + 67¢ /75)8 - 58 .
1

D iUk ko ks (5) (7c)
Iki|=1,¢
where the summations are restricted to wave vectors Ry P
whose magnitude is either 1 @, lying on two rings Dy _
in Fourier space. The set of Fourier coefficients, i
which give rise to the lowest value of for a given 12—fold -~
choice of the parameters and «, determines the most i
favorable steady-state solution of the model equation (4). 20 ¢ e i
We are interested only in finding the global minimum of /
F, thus establishing that our model indeed predicts the « yd Hexagons
existence of the patterns observed in the two-frequency /
parametric forcing experiments. Of course, this approach 1ol / |
may overlook metastable states or local minima of the free ‘ /
energy. Note that with the omission of the gradient term, /
one may perform a rescaling of the field— au. The ,’
rescaled free energy *F is then controlled by a single Stripes

control parameter

3.0

0.0 ‘

e = e/a’. (6) 0.0 0;5 1.0

To study the formation _Of (;Iodecagonal' patterns We-i 1. phase diagram of the lowest-energy steady-state so-
chooseq = 2 cog#/12), which is the magnitude of the |utions of the model equation (4) foy = 2codw/12). The
vector sum of two unit vectors separated by an angle ophase boundaries are lines of constgint= &/a?.
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For ¢* > 1.913 13 the striped pattern has the lowest freeabout 30 wavelengths. The simulation was performed on a
energy. Forl.91313 > &¢* > 0.087 76 the 6-fold pattern 256 X 256 grid, with Adams-Bashforth second-order time
of perfect hexagons and the 2-fold pattern of compressestepping. The value af was taken to be between 10 and
hexagons (denoted by 4-2), which are degenerate, are masd0. Figures 2(a)—2(d) show the real-space and Fourier-
favorable. Fore™ < 0.087 76 the dodecagonal pattern is space results of the simulations wigh= 2 cog7/12) for
the most stable. These analytical results are depicted warying values of the control paramet€r The results are
the phase diagram of Fig. 1. Note that the phase diagraronsistent with the Lyapunov-functional analysis and the
depicts only the boundaries between global minima; irphase diagram of Fig. 1.
certain regions of the phase diagram additional states may Eight-fold and 10-fold symmetric patterns are not ob-
be locally stable. served in our model for any choice gf An analytic
The model equation (4), supplemented with periodiccalculation of the Lyapunov functional (5) for these pat-
boundary conditions, was solved numerically on a squaréerns shows that it is greater than the free engfgy7b)
domain using a pseudospectral method. The unit celbf the 6-fold state, for any value of the control parameter
was typically chosen so that the simulation region helce*. This isin accord with the experiments of Edwards and
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FIG. 2. Numerical solutions of the model equation (4) showing real-space patterns along with their Fourier spectra for different
values of the control parametef = £/a%. The real-space images efx,y,t — =) show one-quarter of the simulation cell

with darker shades corresponding to larger values of the field. All figures are drawn to the same scale. In cases (a)—
(d) ¢ = 2cod7/12) = (2 + +/3)V% (a) a 2-fold pattern of stripes fos* = 2, (b) a 2-fold pattern of compressed hexagons

for ¢* = 0.1, (c) a 6-fold pattern of perfect hexagons fgr= 1.8, (d) a 12-fold pattern foe* = 0.015. In(e)g = 2, ¢* = 0.04,

yielding a 2-fold superstructure of stripes. In ()= +/2, ¢ = 0.04, giving rise to a 4-fold pattern of squares.
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Fauve [3], where such patterns are not observed. Thigg frequencies it might be possible to stabilize quasiperi-
does not rule out the possibility that octagonal andodic patterns with even higher orders of symmetry, such
decagonal patterns are locally stable but only that withiras 18 or 24. We leave the stability of higher-order
the limits of our model they are not globally stable. Two symmetric patterns as an open theoretical and experimen-
additional patterns that are observed in our model are tal question.
superposition of stripes of periodiciti@sr and 7= [shown We are grateful to Michael Cross, Jonathan Miller,
in Fig. 2(e)] and a square pattern fgr= +/2 [shown and Peter Weichman for many helpful discussions. This
in Fig. 2(f)]. The latter has been reported by Edwardsresearch was supported by the California Institute of
and Fauve. If one examines the Lyapunov functional (5)Technology through its Division Research Fellowships in
in its full generality by allowing the value of and all Theoretical Physics.
the amplitudes and phases to vary independently, other
patterns might be discovered. We have examined only
the symmetric patterns discussed here.

The simplicity of our model shows that for continuous
media very little is required to stabilize structures with
quasiperiodic long range order: two length scales and triad™!
. . (1831).
interactions. The reason that 12-folld patterns are st_able[z] B. Christiansen, P. Alstram, and M.T. Levinsen, Phys.
and_8— and 10-fold patterns are not is purely gepm_etrlcal. Rev. Lett.68, 2157 (1992).
In view of the Lyapunov functional (5), the crucial issue [3] w.s. Edwards and S. Fauve, Phys. Rev.4E R788
is the competition between the number of modes, which = (1993); J. Fluid Mech278 123 (1994).
tends to increase the value d¢f, and the number of [4] J.P. Gollub, Proc. Natl. Acad. Sci. U.S.82, 6705 (1995).
triad interactions, which tends to decrease the valug of [5] M. Torres, G. Pastor, I. Jiménez, and F. Montero De
The dodecagonal pattern of Fig. 2(d) contains 24 nonzero  Espinoza, Chaos Solitons Fract&ls2089 (1995).
Fourier modes an@®2 distinct triangles. The octagonal [6] T. Besson, W.S. Edwards, and L.S. Tuckerman, Phys.
and decagonal patterns do not contain a sufficient number_ Rev. E54, 507 (1996). ) _
of triangles to compete with the 6-fold pattern of Fig. 2(c). [7] B-A. Malomed, A. A. Nepomnyashchii, and M. 1. Tribel-
Our model confirms the conclusion of Edwards and Fauve,,, SKi SOV. Phys. JETRS, 388 (1989).

that “12-fold patterns are mor mmon than previous! [8] W. Zhang and J. Vifals, Phys. Rev.33, R4283 (1996).
Sua;)posedo" patterns are more co 0 an previously [9] P. Chen and J. Vidals, “Amplitude Equations and Pattern

L . Selection in Faraday Waves” (to be published).
Our simplistic model is clearly not adequate for study-[10] H.w. Maller, Phys. Rev. B9, 1273 (1994).

ing the structural stability quasicrystals in the solid state[11] A.C. Newell and Y. Pomeau, J. Phys.25, L429 (1993).
yet it may offer a very simple system in which to study [12] J.B. Swift and P.C. Hohenberg, Phys. Rev.15, 319
general questions regarding quasiperiodic order. These (1977).

may include such questions as the formation and propd13] M.C. Cross and P.C. Hohenberg, Rev. Mod. PHg5.
gation of defects and phase boundaries as well as the dy- 851 (1993). N

namics of phason modes [16]. Moreover, we note that (4)14] See, for example, P.M. Chaikin and T.C. Lubensky,
may apply to situations other than Faraday waves. Any Principles of Condensed Matter Physid€ambridge
physical system that can be tuned such that two wave- CniVersity Press, Cambridge, 1995), Chap. 4.7; or, for
lengths undergo a simultaneous supercritical bifurcation more detail, see L. Gronlund and N.D. Mermin, Phys.

. X il Rev. B 38, 3699 (1988).
can be described by an equation similar to (4). [15] For a definition of “symmorphic space group” in the case

An equation similar to (4) could be used to study of quasiperiodic structures and of the notatiovnm,

multiple-frequency forcing of Faraday waves with more see, for example, D.S. Rokhsar, D.C. Wright, and N.D.
than just two frequencies, as suggested by the title of this  Mermin, Acta Crystallogr. Sect. A4, 197 (1988).
Letter. We may speculate that with three or four forc-[16] H.W. Mdller, Phys. Rev. Lett71, 3287 (1993).
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