
Comment on “Quantum Quasicrystals of
Spin-Orbit-Coupled Dipolar Bosons”

In a recent Letter [1], Gopalakrishnan et al. show that
quasi-two-dimensional dipolar Bose gases may exhibit a
variety of crystalline phases, including a pentagonal quasi-
crystal. Realizing quasicrystalline condensates would
provide new ways to study the quantum dynamics of
their collective phason modes, where according to the
authors “there are typically additional phasons in quantum-
mechanical quasicrystals, when compared with their
classical equivalents.” I explain here that, on the contrary,
the number of phason modes does not depend on whether
they are classical or quantum.
Let us describe the crystalline state by a function ψαðrÞ,

possibly multicomponent—a real-valued scalar density or
tensor field in the classical case or a complex-valued wave
function or spinor in the quantum mechanical case—whose
Fourier expansion is given by

ψαðrÞ ¼
X

k∈L
ψαðkÞeik·r; ð1Þ

where the (reciprocal) lattice L can be expressed as the set
of all integral linear combinations of a finite number D of
d-dimensional wave vectors [2]. If the smallest possible D,
called the “rank” of the crystal, is equal to the physical
dimension d, the crystal is periodic. More generally, for
quasiperiodic crystals, D ≥ d, and one refers to quasiperi-
odic crystals that are aperiodic (with D > d) as “quasi-
crystals” [3].
A generic free energy, expressed in Fourier space as

F ¼
X

j≤n

X

α1;…; αn

X

k1;…;kn

Aα1;…;αn
j ðk1;…;knÞ

× ψα1ðk1Þ � � �ψαjðkjÞψ�
αjþ1

ð−kjþ1Þ � � �ψ�
αnð−knÞ; ð2Þ

is restricted only by the requirements imposed by the
symmetry of the disordered liquid phase. Phonons and
phasons are Goldstone modes that result from breaking
the continuous symmetries of F that are imposed by
translation invariance, which requires the coefficients
Aα1;…;αn
j ðk1;…;knÞ to vanish unless k1 þ � � � þ kn ¼ 0

[4]. We count the number of such broken symmetries by
characterizing the set of all symmetry-broken minimum
free-energy states since any broken symmetry operation, by
definition, takes a particular minimum free-energy state
into a different one. Surprisingly [5], as explained below,
the number of these Goldstone modes is not equal to the
number of independent translations in d dimensions, but
rather to the rank D of the crystal.
A generic set of coefficients A can vary freely with

external parameters subject to symmetry restrictions alone,
while the field ψα adjusts itself accordingly to minimize F .
Thus, for two different fields ψα and ψ 0

α to be indistinguish-
able [6], in the sense that they both minimize the same

generic free energy, they must agree independently on all the
products in F with nonvanishing coefficients. In the absence
of additional symmetry, one can then show [6,7], using the
identity of products of order 2 and 3 alone, that the condition
for indistinguishability reduces to the requirement that

ψ 0
αðkÞ ¼ e2πiχðkÞψαðkÞ; ð3Þ

where χðkÞ, called a “gauge function” [8], is linear to within
an additive integer on the lattice L.
In quantum crystals with additional U(1) symmetry

ψα → eiθψα or in classical crystals with an additional Z2

symmetry ψα → −ψα, the free energy (2) is restricted to
contain products of only even order, questioning the
linearity of gauge functions. Nevertheless, one can still
use the identity of products of order 2 to establish Eq. (3); in
the case of complex-valued fields, use products of order 4
to show that χð−kÞ ¼ −χðkÞ, which is trivially so for real-
valued fields; and finally, use products of order 6 to obtain
χðk1 þ k2Þ ¼ χðk1Þ þ χðk2Þ, where these equalities hold
to within an overall constant coming from the additional
symmetry. Suppression of sixth- or higher-order products at
low density—whether in classical or in quantum crystals—
does not affect this outcome. Such terms might be irrelevant
at the critical fixed point, but dangerously so [9] in the
sense that despite being small they still distinguish between
states in the ordered phase.
The linearity of gauge functions implies that χðkÞ is

uniquely determined by specifying its values on a chosen
basis for L, consisting of D linearly independent vectors
over the integers. Thus, there are exactly D independent
symmetry operations in F that are broken and therefore
exactly D Goldstone modes. One may choose the basis so
that d of the Goldstone modes are the familiar phonon
modes. The remaining D − d modes are the phason modes,
regardless of whether the crystal is quantum or classical.
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