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In its most basic form an oscillator consists of a resonator driven on resonance, through feedback, to

create a periodic signal sustained by a static energy source. The generation of a stable frequency, the basic

function of oscillators, is typically achieved by increasing the amplitude of motion of the resonator while

remaining within its linear, harmonic regime. Contrary to this conventional paradigm, in this Letter we

show that by operating the oscillator at special points in the resonator’s anharmonic regime we can

overcome fundamental limitations of oscillator performance due to thermodynamic noise as well as

practical limitations due to noise from the sustaining circuit. We develop a comprehensive model that

accounts for the major contributions to the phase noise of the nonlinear oscillator. Using a nano-

electromechanical system based oscillator, we experimentally verify the existence of a special region

in the operational parameter space that enables suppressing the most significant contributions to the

oscillator’s phase noise, as predicted by our model.
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Advances in time and frequency measurement have
closely paralleled technological progress. However, since
the appearance of quartz-crystal-based oscillators [1], very
few conceptual innovations have been introduced: quartz
crystal resonators (their frequency-determining elements)
operate at the highest possible signal to noise ratio in
order to minimize phase noise. The resonator is always
kept within its linear regime, which results in oscillator
phase noise being inversely proportional to the oscillator
carrier power. Ongoing technological evolution requires a
dramatic reduction in the oscillator size and power, pref-
erably without performance degradation. Micro- and nano-
electromechanical systems [2–4] are increasingly being
considered as valid alternatives to quartz as the frequency-
determining element. However, with the reduction in size,
their dynamic range also diminishes because nonlinear
effects manifest at lower amplitudes [5,6]. This has proven
interesting for fundamental studies [7–9], but is typically
considered detrimental to the oscillator performance
[10,11]. However, several techniques have been proposed
to utilize nonlinear behavior in the mechanical element in
order to improve oscillator performance. These proposals
rely on the local elimination of frequency to energy depen-
dence [12], evasion of amplifier noise [13], use of either
parametric feedback [14], nondegenerate parametric drive
[15], or coupling to internal resonances [14,16].

In this Letter, we analyze all the contributions to the
phase noise in an oscillator based on a nonlinear resonator.
We predict the existence of a special region in the parame-
ter space, above the nonlinear threshold, where the domi-
nant contributions to the phase noise are suppressed. We
construct such an oscillator from a nanomechanical doubly
clamped beam resonator and measure its phase noise. We
find good agreement with our theoretical model and

unequivocally confirm experimentally the existence of
such a special region, where the phase noise performance
is improved beyond the limitations of the linear regime.
Our findings contravene conventional phenomenological
wisdom, which assumes that operation beyond the thresh-
old of nonlinearity necessarily degrades phase noise.
Indeed, by operating the oscillator in this region, the signal
level can be increased to large values without the conven-
tionally expected performance degradation. It is therefore
possible to overcome fundamental limitations of oscillator
performance due to thermodynamic noise.
Because we are interested in slow modulation dynamics

of an oscillator constructed from a high-Q resonator, we
introduce a dimensionless slow time scale T ¼ "!0t with
" a small expansion parameter chosen for convenience as
detailed below and !0 the resonance frequency of the
resonator. The resonator signal amplitude is given by
xðtÞ ¼ x0Re½AðTÞei!0t� þ � � � , with x0 being a convenient
scale factor as detailed below, Re standing for real part,
and the ellipses ( . . . ) representing negligible harmonics
generated by the resonator nonlinearity. Our theoretical
analysis is based on the dimensionless equation of motion

for the complex amplitude AðTÞ ¼ aðTÞei�ðTÞ of the reso-
nator dynamics

dA

dT
¼ ��

2
Aþ i

3

8
�jAj2Aþ i

2
FðaÞei�ei�: (1)

The first two terms on the right-hand side of Eq. (1)
arise, respectively, from the linear dissipation and the
essential nonlinearity of the resonator, i.e., the dependence
of the resonance frequency on the amplitude of motion,
and � and � are parameters that depend on the specific
resonator. The third term represents the feedback loop
drive projected onto the slow equation of motion of the
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resonator. The behavior of the feedback loop is then
described by the gain function FðaÞ and the phase delay
� relative to the resonator phase. Equation (1) relies on the
assumption of weak feedback (just sufficient to overcome
the small dissipation of the high-Q resonator); then the
amplitude of the motion is small, so that nonlinear fre-
quency shifts are comparable to the linear resonance line
width, but small compared to the resonance frequency !0.

Equation (1) is derived from the basic equation of mo-
tion using secular perturbation theory [17], and our results
are generally applicable. However, to make the discussion
concrete we will focus on our particular experimental
demonstration, based on a nanoelectromechanical system
(NEMS) resonator. The parameters � and � are related to
the quality factor Q and to the nonlinear coefficient ~� in
the spring constant m!2

0ð1þ ~�x2Þ and, in our particular

implementation, they are defined by

� ¼ 1

Q"
; � ¼ ~�x20

m!2
0"

; (2)

withm themass of the resonator. For the perturbation theory
to be consistent � and � must be Oð1Þ quantities. Thus we
choose scale factors " ¼ Q�1 and x20 ¼ m!2

0=~�Q so that in

the absence of fluctuations � and � are unity.
We focus our study on a heavily saturated oscillator, that

is, one in which the system gain is designed to keep the
feedbackmagnitude constant regardless of the amplitude of
motion. This scheme is also known as a phase feedback
oscillator [13,18], which is commonly used to suppress
one quadrature of the amplifier noise. It also provides,
in principle, a quantum nondemolition method [19] to
track the resonator phase. For saturated feedback, Eq. (1)
reduces to

dA

dT
¼ ��

2
Aþ i

3

8
�jAj2A� i

s

2
ei�ei� (3)

with s the saturation level. This equation can be separated
into equations for the magnitude a and phase �

da

dT
¼ ��a

2
þ s

2
sin� � fa;

d�

dT
¼ 3�

8
a2 � s

2

cos�

a
� f�:

(4)

For steady state oscillations da=dT ¼ 0, d�=dT ¼ �,
with� giving the frequency offset of the oscillations from
the linear resonance frequency, in units of the resonator
line width. Thus, Eqs. (4) yield expressions for the oscil-
lation amplitude and frequency offset that define the limit
cycle

a ¼ s

�
sin�; � ¼ d�

dT
¼ 3�

8
a2 � s

2

cos�

a
: (5)

Our experimental demonstration is performed using a
piezoelectric NEMS doubly clamped beam made from an
aluminum nitride (AlN) and molybdenum (Mo) multilayer
(Fig. 1). In our experimental implementation [Fig. 1(a)],

both the phase delay� and the power of the feedback s can
be externally and independently controlled. This permits
full exploration of the input parameter space of the feed-
back oscillator. We first confirm that the system behaves
according to predictions for a heavily saturated oscillator
[Fig. 1(b)]. For periodic solutions� ¼ �0 þ�T the equa-
tion of motion (3) for the heavily saturated oscillator is
identical to the one for an open-loop resonator externally
driven with a periodic source of constant magnitude s; then
� represents the phase difference between the resonator
motion and the drive. As is known for nonlinear resonators,
when the driving force is sufficiently large, the system can
bifurcate into three possible solutions at a given drive
frequency: two of these are stable, and one is unstable
[17]. In the case of the heavily saturated oscillator, the
system also presents three possible values for the ampli-
tude of oscillation at a given frequency above a threshold
feedback power. However, in this latter case, the resonator-
drive phase difference is itself determined by the feedback,
and both amplitude and frequency are single-valued func-
tions of this phase. Therefore, all three operating condi-
tions at the same frequency might be stable [18], and this is
indeed confirmed by a stability analysis using Eq. (3), and
by our measurements [Fig. 1(b)].
We now turn to the noise analysis of the feedback-

sustained oscillator. In general, the noise, when projected
onto the slow dynamics, is represented by adding a com-
plex stochastic term �RðTÞ þ i�IðTÞ to the evolution in
Eq. (1). The performance of an oscillator is typically
characterized by the spectral density of its phase noise

(a) (b)

FIG. 1 (color online). (a) Schematic diagram of the feedback
system. Motion detection is performed using metallic piezore-
sistive effect, the beam is driven by piezoelectric actuation [6].
Components include a phase delay (�), a variable limiter (s), a
180� power splitter, variable attenuators and phase shifters (�).
Colored SEMmicrograph shows the doubly-clamped AlN multi-
layer beam used for experiments (420 nm wide, 9 �m long,
210 nm thick). At 300 K and 1 mtorr its resonance frequency is
f0 ¼ 12:63 MHz and quality factor is Q ¼ 1600. The scale bar
is 500 nm. (b) (Squares and solid lines) Resonant response of the
open-loop (driven) resonator for five different driving powers
(s ¼ 0:5, 1.22, 3.06, 4.73, 7.23). (Spheres) Oscillation amplitude
vs oscillation frequency for the closed-loop system in (a), taken
at the same values of s as the open-loop data while sweeping the
phase �. As predicted by theory, both responses overlap where
the open-loop response is stable. Using the closed-loop system,
access to otherwise unstable operation points is possible. Plotted
magnitudes are scaled following the Supplemental Material [23].
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S� or the variance ½��ðT þ �Þ � ��ðTÞ�2 of the phase

deviation ��ðTÞ ¼ �ðTÞ ��T, which can be found by
solving Eq. (1) with the additional stochastic terms.

For our saturated feedback NEMS oscillator it is pos-
sible to distinguish two types of noise affecting the phase
diffusion of the oscillator: thermomechanical noise and
parameter noise [20,21]. Thermomechanical noise is
caused by the Brownian motion of the resonator: it enters
the equation as a random, perturbative force and affects
independently both quadratures of the oscillation with the
same intensity. Its projection in quadrature to the displace-
ment (the phase direction) always affects the oscillator
performance (hereafter called the direct thermomechanical
contribution), whereas its projection in the amplitude
direction affects the phase noise only through amplitude-
phase conversion [21]. This is typically assumed to be
dominant at higher amplitudes when nonlinear resonators
are used. Parameter noise is caused by fluctuations in the
parameters pi determining the oscillator operational point
(in our case �, s, �, and�). Each independent noise source
n is described by stochastic terms va;n�nðTÞ, v�;n�nðTÞ
added to the amplitude and phase evolution equations (4),
respectively, where the noise vector (va;n, v�;n) gives the

relative strength of the nth noise force in the amplitude and
phase quadratures.

Two key points lead to our predictions for reducing the
frequency precision degradation. First, for small frequency
offsets compared to the amplitude relaxation rate (i.e., the
resonator line width) the time derivative term da=dT can
be neglected in calculating the amplitude fluctuations.
Second, the evolution terms fa, f� in Eqs. (4) do not

depend on the phase �: this is the basic phase symmetry
of the limit cycle when Eq. (1) applies. These lead directly
to a long-time phase diffusion, which is given by

½��ðT þ �Þ � ��ðTÞ�2 ¼
�X

n

DnIn

�
� (6)

with

Dn ¼
�
v�;n �

@f�=@a

@fa=@a
va;n

�
2
; (7)

and with In the noise intensity defined by

�nðTÞ�nðT0Þ ¼ In�ðT � T0Þ: (8)

These results can be formally derived using a spectral
analysis of the stochastic fluctuations, or following the
methods of Demir et al. [20] for phase diffusion of a
general limit cycle. Although Eq. (8) corresponds to white
noise, one can generalize these results to other types of
noise spectra, such as pink noise, i.e., 1=f [21].
The first term in Eq. (7) represents the direct effect of the

nth noise source on the oscillator phase; the second term
accounts for phase diffusion due to amplitude-phase con-
version. Furthermore, for noise due to fluctuations in the
parameter pi, the noise vector becomes v�;i ¼ @f�=@pi,

va;i ¼ @fa=@pi, and, using the stationary amplitude ap-

proximation fa � 0, the expression for Dn reduces to

Dn ¼ Dpi
¼

�
d�

dpi

�
2
; (9)

so that the stochastic phase diffusion can be evaluated
immediately from the dependence of the oscillator fre-
quency on the parameters. Alternatively, for thermome-
chanical noise that is purely in the amplitude quadrature
(va ¼ 1, v� ¼ 0), the coefficient that quantifies the

strength of amplitude-phase conversion is

Da ¼
�
@�

@a

�
@fa
@a

�
2 ¼ 4

�
@�

@a

�
2
; (10)

whereas for thermomechanical noise that is purely in the
phase quadrature (va ¼ 0, v� ¼ 1=a) the strength of

direct thermomechanical noise contribution to the phase
noise is Ddirect ¼ 1=a2.
Combining the above results, the total phase noise as a

function of the offset frequency �� is given by the sum

S�ð��Þ ¼ 1

2	

�c

Q��2

X
n

InDn; (11)

where �c is the carrier frequency and the parameters Dn

have been defined above and the expressions are expanded
in Table I. Note that the dependence on ���2 emerges from
the assumption of the noise terms being white. As we show
elsewhere [21], a similar result is obtained if colored noise
is considered.
Equation (11) shows two strategies for oscillator per-

formance optimization: minimization of either In or Dn.

TABLE I. Diffusion coefficients for different physical mechanisms affecting phase noise.

Type of noise Diffusion susceptibility to a parameter Noise intensity

Thermomechanical-direct Ddirect ¼ 1
a2

ITh

Thermomechanical-A-� conversion Da ¼ ð@�o

@a Þ2=ð@fa@a Þ2 ¼ 4
�2 ð34aþ 1

2a cot�Þ2 ITh

Parameter noise-� D� ¼ ðd�o

d� Þ2 ¼ ð 1
2sin2�

þ 3
4a

2 cot�Þ2 I�

Parameter noise-s Ds ¼ ðd�o

ds Þ2 ¼ ð34a sin�Þ2 Is

Parameter noise-� D� ¼ ðd�o

d� Þ2 ¼ ð38a2Þ2 I�

Parameter noise-� D� ¼ ðd�o

d� Þ2 ¼ ðað3a4 þ 1
2a

cos�
sin�ÞÞ2 I�

Parameter noise-!0 D!0
¼ 1

4 I!0
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In this Letter, we focus on the latter—both for its general
applicability and because the Dn terms are experimentally
controllable parameters, whereas the In coefficients are
dictated by the environment. Further, we pay special atten-
tion to the terms that are typically considered to be domi-
nant: Ddirect, Da, and D�.

The direct contribution of thermomechanical noise has
been widely analyzed in the literature and is suppressed by
maximizing the oscillator amplitude (a). Noise in the feed-
back phase (�) can be canceled at the operational points
where D� ¼ ðd�=d�Þ2 ¼ 0. Greywall et al. and Yurke
et al. [13,22] proposed the operation at the bifurcation point,
where this condition is satisfied, and showed that near such a
Duffing critical point (DCP) the oscillator’s phase is unaf-
fected by fluctuations in �. We extend this understanding
further and note that above the threshold of nonlinearity,
for each saturation value, there are actually two values of�
for which d�=d� ¼ 0. At the bifurcation (s ¼ sc), the case
considered by Greywall et al. and Yurke et al. [13,22], both
of these DCPs are degenerate at � ¼ 120�. However, for
larger feedback powers, one family of DCPs approaches
� ¼ 90� while the other one tends toward � ¼ 180� (see
Supplemental Material, Fig. S2 [23]).

From Eq. (10) we conclude that amplitude-phase con-
verted thermal noise can be canceled at the points where
@�=@a ¼ 0 (note that this is not where the total derivative
vanishes, i.e., d�=da ¼ 0) [24]. This term has always
been considered to be zero when the resonator used is

linear and assumed to be unavoidable when the resonator
used is nonlinear. In fact, we show that for linear resonators
this is only true for a particular feedback phase, � ¼ 90�,
and, equivalently, for nonlinear resonators there also exists
a value of� for each feedback power such that @�=@a¼0,
effectively detaching amplitude and phase. We call this the
amplitude detachment point (ADP). Importantly, accord-
ing to our model, the location of the ADP turns out to be
very close to the second aforementioned family of DCPs
(see Supplemental Material, Fig. S2 [23]); therefore, this
yields a region where two of the major contributions to
phase noise can be drastically reduced.
In order to experimentally verify the predicted behavior,

wemeasure the phase noise of the heavily saturated oscillator
from Fig. 1 for different values of the feedback power s and
phase�. Figure 2 shows the results obtained at �� ¼ 1 kHz
offset from the carrier (colored spheres). Solid black lines
correspond to the predictions of the model described
above (and in the Supplemental Material [23]). We find
good agreement between the experiments and theory. In
order to perform such a quantitative comparison, we first
independently estimate ITh and I�, and subsequently find an
upper bound for the value of Is. We then choose the value for
I!0

to provide good agreement in the region close to theADP.

Finally,weperformminor adjustments (causing�3 dBc=Hz
in the phase noise) to get the best possible match (see
Supplemental Material [23], Sec. C). Figure 2 indicates
that if the resonator is operated above its onset of nonlinearity

FIG. 2 (color online). Experimental phase noise at �� ¼ 1 kHz offset from the carrier, plotted as 10log10½S�ð1 kHzÞ�, for different
saturation power levels (spheres), superimposed on the total theoretical estimate (black line). The calculated contributions to the total
phase noise from the different sources are also shown. Thermomechanical noise (direct and amplitude-phase converted contributions
plotted together) and noise in � dominate most of the phase range except in the region close to the amplitude-phase detachment point,
where fluctuations in frequency become apparent. Fluctuations in saturation (s), dissipation (�), and nonlinearity (�) are plotted jointly
for the sake of simplicity. Noise intensity estimates are detailed in the Supplemental Material [23]. The symmetric behavior with
respect to � ¼ 90� seen at low saturation values (s ¼ 0:5) is lost for higher values of s, where a minimum can be seen. This minimum
corresponds to the simultaneous minimization of noise in � and amplitude-phase conversion.
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(s ¼ sc ¼ 1:433) the phase noise near the conventional
operational point (� ¼ 90�) is indeed increased. However,
when operating near the second set of DCPs and close to the
ADP, a significant performance improvement beyondwhat is
possible in the linear regime can be achieved.

Using our model, we also gain insight into the decom-
position of the observed phase noise according to the physi-
cal origins of the fluctuations, as can be seen in Fig. 2. We
show that thermomechanical noise and noise in � are the
dominant contributions for most values of the phase. For
high saturation values, however, it can also be observed that
the phase noise at the minimum is not dominated by either
of those contributions. There is a different component that is
only visible around that region (and is hidden otherwise),
which corresponds to fluctuations in the resonant frequency
of the mechanical resonator, possibly arising from environ-
mental noise [24,25] or parametric noise tuning the fre-
quency [26]. The diffusion coefficient for this parameter
is constant over all of the parameter space; hence, this
component of oscillator noise cannot be reduced by tuning
the feedback phase. This specific parameter fluctuation
imposes a bound on the phase noise reduction that is
achievable with this NEMS device (see Supplemental
Material [23], Sec. D). However, even with this ultimate
limitation the phase noise is rendered significantly lower
than is possible using conventional linear schemes.

In summary, we theoretically predict and experimentally
demonstrate a fundamental and simple oscillator paradigm
that harnesses nonlinear stiffness, in which the phase noise
is substantially lower than in linear operation. At the newly
identified special points in the s-� parameter space, the
effects of fluctuations in the feedback phase are eliminated
and amplitude-phase conversion of the thermomechanical
noise is suppressed. This optimization contravenes con-
ventional wisdom and establishes a new cornerstone for the
use of nonlinear resonators as frequency-determining ele-
ments in self-sustained oscillators. We highlight that these
results are applicable not only to NEMS as used here, but
can also be used for any type of resonator (electrical,
optical, etc.) that possesses nonlinearity [27–29].

This work was supported by the Defense Advanced
Research Projects Agency Microsystems Technology
Office, Dynamic Enabled Frequency Sources Program
(DEFYS) through Department of Interior (FA8650-10-1-
7029). L. G.V. acknowledges financial support from the
European Commission (PIOF-GA-2008-220682).

*Corresponding author.
roukes@caltech.edu

[1] W.G. Cady, Proc. IRE 10, 83 (1922).
[2] C. J. Zuo, N. Sinha, J. Van der Spiegel, and G. Piazza,

J. Microelectromech. Syst. 19, 570 (2010).
[3] J. Verd, A. Uranga, G. Abadal, J. L. Teva, F. Torres, J.

Lopez, F. Perez-Murano, J. Esteve, and N. Barniol, IEEE
Electron Device Lett. 29, 146 (2008).

[4] J. T.M. van Beek and R. Puers, J. Micromech. Microeng.
22, 013001 (2012).

[5] L. G. Villanueva, R. B. Karabalin, M.H. Matheny, D. Chi,
J. E. Sader, and M. L. Roukes, Phys. Rev. B 87, 024304
(2013).

[6] M.H. Matheny, L. G. Villanueva, R. B. Karabalin, J. E.
Sader, and M. L. Roukes, Nano Lett., 13 1622 (2013).

[7] A. Eichler, J. Moser, J. Chaste, M. Zdrojek, I. Wilson-Rae,
and A. Bachtold, Nat. Nanotechnol. 6, 339 (2011).

[8] H. J. R. Westra, M. Poot, H. S. J. van der Zant, and W. J.
Venstra, Phys. Rev. Lett. 105, 117205 (2010).

[9] R. B. Karabalin, R. Lifshitz, M. C. Cross, M.H. Matheny,
S. C. Masmanidis, and M. L. Roukes, Phys. Rev. Lett. 106,
094102 (2011).

[10] V. Kaajakari, T. Mattila, A. Oja, and H. Seppa,
J. Microelectromech. Syst. 13, 715 (2004).

[11] A. N. Cleland and M. L. Roukes, J. Appl. Phys. 92, 2758
(2002).

[12] M. I. Dykman, R. Mannella, P. V. E. Mcclintock, S.M.
Soskin, and N.G. Stocks, Europhys. Lett. 13, 691 (1990).

[13] D. S. Greywall, B. Yurke, P. A. Busch, A.N. Pargellis, and
R. L. Willett, Phys. Rev. Lett. 72, 2992 (1994).

[14] L.G. Villanueva, R. B. Karabalin, M.H. Matheny, E. Kenig,
M.C. Cross, and M.L. Roukes, Nano Lett. 11, 5054 (2011).

[15] E. Kenig, M.C. Cross, R. Lifshitz, R. B. Karabalin, L. G.
Villanueva, M.H. Matheny, and M. L. Roukes, Phys. Rev.
Lett. 108, 264102 (2012).

[16] D. Antonio, D.H. Zanette, and D. Lopez, Nat. Commun.
3, 806 (2012).

[17] R. Lifshitz and M.C. Cross, in Reviews of Nonlinear
Dynamics and Complexity, edited by H.G. Schuster
(Wiley-VCH, Weinheim, 2008), Vol. 1, pp. 1–52.

[18] H. K. Lee, R. Melamud, S. Chandorkar, J. Salvia, S.
Yoneoka, and T.W. Kenny, J. Microelectromech. Syst.
20, 1228 (2011).

[19] C.M. Caves, K. S. Thorne, R.W. P. Drever, V.D. Sandberg,
and M. Zimmermann, Rev. Mod. Phys. 52, 341 (1980).

[20] A. Demir, A. Mehrotra, and J. Roychowdhury, IEEE Trans.
Circuits Syst. I-Fundamental Theor. Appl. 47, 655 (2000).

[21] E. Kenig, M. C. Cross, L. G. Villanueva, R. B. Karabalin,
M.H. Matheny, R. Lifshitz, and M. L. Roukes, Phys. Rev.
E 86, 056207 (2012).

[22] B. Yurke, D. S. Greywall, A. N. Pargellis, and P. A. Busch,
Phys. Rev. A 51, 4211 (1995).

[23] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.110.177208 for de-
tails on the amplitude equation, scaling parameters, noise
intensity estimates, etc.

[24] Y. T. Yang, C. Callegari, X. L. Feng, and M. L. Roukes,
Nano Lett. 11, 1753 (2011).

[25] K. Y. Fong, W.H. P. Pernice, and H.X. Tang, Phys. Rev. B
85, 161410 (2012).

[26] R. B. Karabalin, L. G. Villanueva, M.H. Matheny, J. E.
Sader, and M. L. Roukes, Phys. Rev. Lett. 108, 236101
(2012).

[27] A. Tazzoli, M. Rinaldi, and G. Piazza, IEEE Electron
Device Lett. 33, 724 (2012).

[28] I. Mahboob, K. Nishiguchi, H. Okamoto, and H.
Yamaguchi, Nat. Phys. 8, 387 (2012).

[29] C. Y. Chen, S. Rosenblatt, K. I. Bolotin, W. Kalb, P. Kim,
I. Kymissis, H. L. Stormer, T. F. Heinz, and J. Hone, Nat.
Nanotechnol. 4, 861 (2009).

PRL 110, 177208 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

26 APRIL 2013

177208-5

http://dx.doi.org/10.1109/JRPROC.1922.219800
http://dx.doi.org/10.1109/JMEMS.2010.2045879
http://dx.doi.org/10.1109/LED.2007.914085
http://dx.doi.org/10.1109/LED.2007.914085
http://dx.doi.org/10.1088/0960-1317/22/1/013001
http://dx.doi.org/10.1088/0960-1317/22/1/013001
http://dx.doi.org/10.1103/PhysRevB.87.024304
http://dx.doi.org/10.1103/PhysRevB.87.024304
http://dx.doi.org/10.1021/nl400070e
http://dx.doi.org/10.1038/nnano.2011.71
http://dx.doi.org/10.1103/PhysRevLett.105.117205
http://dx.doi.org/10.1103/PhysRevLett.106.094102
http://dx.doi.org/10.1103/PhysRevLett.106.094102
http://dx.doi.org/10.1109/JMEMS.2004.835771
http://dx.doi.org/10.1063/1.1499745
http://dx.doi.org/10.1063/1.1499745
http://dx.doi.org/10.1209/0295-5075/13/8/004
http://dx.doi.org/10.1103/PhysRevLett.72.2992
http://dx.doi.org/10.1021/nl2031162
http://dx.doi.org/10.1103/PhysRevLett.108.264102
http://dx.doi.org/10.1103/PhysRevLett.108.264102
http://dx.doi.org/10.1038/ncomms1813
http://dx.doi.org/10.1038/ncomms1813
http://dx.doi.org/10.1109/JMEMS.2011.2170821
http://dx.doi.org/10.1109/JMEMS.2011.2170821
http://dx.doi.org/10.1103/RevModPhys.52.341
http://dx.doi.org/10.1109/81.847872
http://dx.doi.org/10.1109/81.847872
http://dx.doi.org/10.1103/PhysRevE.86.056207
http://dx.doi.org/10.1103/PhysRevE.86.056207
http://dx.doi.org/10.1103/PhysRevA.51.4211
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.177208
http://link.aps.org/supplemental/10.1103/PhysRevLett.110.177208
http://dx.doi.org/10.1021/nl2003158
http://dx.doi.org/10.1103/PhysRevB.85.161410
http://dx.doi.org/10.1103/PhysRevB.85.161410
http://dx.doi.org/10.1103/PhysRevLett.108.236101
http://dx.doi.org/10.1103/PhysRevLett.108.236101
http://dx.doi.org/10.1109/LED.2012.2188491
http://dx.doi.org/10.1109/LED.2012.2188491
http://dx.doi.org/10.1038/nphys2277
http://dx.doi.org/10.1038/nnano.2009.267
http://dx.doi.org/10.1038/nnano.2009.267

