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We demonstrate an analytical method for calculating the phase sensitivity of a class of oscillators whose phase
does not affect the time evolution of the other dynamic variables. We show that such oscillators possess the
possibility for complete phase noise elimination. We apply the method to a feedback oscillator which employs
a high Q weakly nonlinear resonator and provide explicit parameter values for which the feedback phase noise
is completely eliminated and others for which there is no amplitude-phase noise conversion. We then establish
an operational mode of the oscillator which optimizes its performance by diminishing the feedback noise in
both quadratures, thermal noise, and quality factor fluctuations. We also study the spectrum of the oscillator and
provide specific results for the case of 1/f noise sources.
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I. INTRODUCTION

The importance of oscillators is widely expressed in both
natural and engineered systems. Such devices, generating a
periodic signal at an inherent frequency, are often developed to
serve as highly accurate time or frequency references [1]. Since
the ideal self-sustained oscillator is mathematically described
as a periodic solution of a set of autonomous differential
equations, its steady-state dynamics can be expressed in terms
of the phase variable tracing the motion along a limit cycle.
This phase is highly sensitive to the stochastic noise present
in the physical system, as the appearance of periodicity
without an external time reference implies the freedom to
drift along the phase direction. The noise-induced phase drift
causes an unwanted broadening of the oscillator’s spectral
peaks, which ideally would have been perfectly discrete [2].
Therefore, the phase sensitivity to noise, which quantifies the
oscillator’s performance under the influence of an arbitrary
noise spectrum, should be as small as possible.

In this paper, we study oscillators that are well described
by equations of motion that are independent of the oscillator
phase variable, so the phase variable does not affect the time
evolution of the dynamical system. Common examples that
fall into this class are oscillators near the Hopf bifurcation
generating the periodic motion and the standard reduced
envelope description of oscillators based on a high Q linear
or weakly nonlinear resonator, with the oscillations sustained
by energy injection either through an active feedback loop
[2–5] or by nondegenerate parametric excitation [6]. An
important consequence of this feature is that the limit cycle
has circular shape, and the complete stochastic problem can
be resolved analytically as we show in Sec. II. In the absence
of this symmetry, the stochastic problem can only be treated
numerically, using methods such as those proposed by Demir
[7–10]. Besides this computational advantage, a remarkable
physical property of this class of oscillators is the possibility
for complete noise elimination by tuning a single parameter,
which cannot be achieved in the general case.
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In Sec. III, as an example we calculate the phase sen-
sitivity to various noise sources of the standard feedback
oscillator based on a high-Q weakly nonlinear resonator.
It has previously been shown that for a saturated feedback
amplitude this oscillator is insensitive to the feedback phase
noise at the critical Duffing point [3,4]. We show that this
property is a particular case of parameter noise elimination
and provide explicit expressions for two feedback loop phase-
shift values as a function of the amplifier saturation level,
for which feedback phase noise is completely eliminated,
and an additional value that eliminates the amplitude-phase
noise conversion by the nonlinear resonator. We show that
in the high saturation limit, one of the operating points that
eliminates the feedback phase noise also eliminates noise in
the feedback amplitude, additive thermal noise, and quality
factor fluctuations. Operating at this point at the high saturation
limit is, thus, an optimal operational state of the oscillator, as
it was recently demonstrated using an oscillator based on a
nanomechanical resonator [11].

We also use the simple analysis possible for phase-
symmetric oscillators to derive complete expressions for the
spectrum of the oscillator for both white and colored noise
sources. For the special case of 1/f noise sources, often
encountered in physical implementations, we show that the
near-carrier spectrum is well approximated by a Lorentzian for
weak noise and by a Gaussian for stronger noise. In both cases,
the tails of the spectral peaks away from the carrier frequency
ω0 fall off as (ω − ω0)−3, as is known from previous results.

II. NOISE PROJECTION METHOD

We start by describing an analytical method for calculating
the stochastic phase sensitivity of a class of oscillators
described by the N equations of motion,

Ẋ = f(X1, . . . ,XN−1), (1)

where XT = (X1, . . . ,XN−1,�) is the vector of dynamical
variables and fT = (f1, . . . ,fN ). Note that f is not a function of
the phase variable �. For the oscillating state, the first N − 1
equations have a fixed point, (X1,0, . . . ,XN−1,0), and the phase
continuously rotates at the rate ω0 = fN (X1,0, . . . ,XN−1,0).
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This is the deterministic description of a class of oscillators for
which the phase variable � does not affect the time evolution
of the dynamical system. Once we add a particular small
random noise defined by the stochastic scalar �(t) to this
deterministic description and linearize the equations near the
fixed point describing the limit cycle, the dynamics of the
small perturbations xT = (x1, . . . ,xN−1,φ) are described by
the equations

ẋ = Jx + vnoise�, (2)

with vT
noise(X1,0, . . . ,XN−1,0) = (vnoise,1, . . . ,vnoise,N ) describ-

ing how the noise couples to the dynamical variables and the
Jacobian

J =

⎛
⎜⎜⎝

∂f1

∂X1
...

∂f1

∂XN−1
0

...
...

...
...

∂fN

∂X1
...

∂fN

∂XN−1
0

⎞
⎟⎟⎠

∣∣∣∣∣∣∣∣
X1,0,...,XN−1,0

. (3)

Since the oscillator spectral peak is typically much narrower
than the corresponding line width of the driven resonator,
which is determined by the decay rates that are the negative
eigenvalues λi of the Jacobian, we are mostly interested in fre-
quency offsets satisfying |ω − ω0| � |λi |. This requirement
is equivalent to taking the time derivatives of the first N − 1
variables of Eq. (2) to be zero. If we then multiply Eq. (2)
from the left by some arbitrary vector vT = (v1, . . . ,vN−1,1),
we obtain a scalar equation for the time evolution of the phase
perturbation,

φ̇ = vT Jx + vT vnoise�. (4)

Now taking v = v⊥, where v⊥ is the eigenvector of the
transposed Jacobian that corresponds to the zero eigenvalue,
for which JT v⊥ = 0, eliminates the first term on the right-hand
side of Eq. (4), and we are left with

φ̇(t) = vT
⊥vnoise �(t). (5)

Thus, we find the result that the noise-driven phase
evolution is determined by the scalar product of the noise
vector and the zero mode of the transposed Jacobian. This
scalar product quantifies the phase sensitivity to a particular
noise vector. The geometrical interpretation of this result is that
in the linear approximation in the rotating frame, each point on
the limit cycle �0 is associated with a hyperplane H�0 spanned
by the eigenvectors of the Jacobian corresponding to negative
eigenvalues, and all points in this hyperplane asymptote to
�0. Therefore, any perturbations in this hyperplane have no
long-term effect on the phase. The zero-eigenvalue eigenvector
of the transposed Jacobian is orthogonal to this hyperplane,
and, thus, projecting the noise vector onto this vector accounts
for the noise-induced phase drift. Under the full nonlinear
flow, the set I�0 in the stable manifold of the limit cycle that
asymptotes to �0 is called the isochrone [9,12,13], and H�0 is
its linear approximation at the vicinity of the limit cycle.

In Sec. IV we use Eq. (5) and express the oscillator
spectrum as a function of the noise spectrum. However, the
phase noise will be proportional to the phase sensitivity
(vT

⊥vnoise)2 regardless of the particular spectral shape. This
quantity thus provides an experimentally controlled measure of
the oscillator performance, under the influence of an arbitrary
noise spectrum. The only change necessary for applying

Eq. (5) to a general limit cycle is to replace the two vectors
with their time-dependent counterparts vT

⊥vnoise → v⊥[ω0t +
φ(t)]T vnoise[ω0t + φ(t)], as derived by many authors [7,9,14].
The fact that, in the present case, these vectors are constant
leads to a particularly simple derivation and analysis and grants
the system the possibility of complete noise elimination by
tuning a single parameter to a point at which the scalar product
is zero, as we show next.

A. Parameter noise

Let us consider noise which derives from fluctua-
tions in some parameter p of the equations so vT

noise =
(∂f1/∂p, . . . ,∂fN/∂p). The fixed points satisfy the following
equations:

0 = f1(X1,0, . . . ,XN−1,0; p),

...
(6)

0 = fN−1(X1,0, . . . ,XN−1,0; p),

ω0 = fN (X1,0, . . . ,XN−1,0; p).

First, we find the effect of a change in the parameter p on the
mean oscillator frequency by differentiating these equations
and multipling from the left by vT

⊥ to find

dω0 = vT
⊥JdX0 + vT

⊥vnoisedp, (7)

with the same vector vnoise appearing as in the stochastic
problem for noise in the parameter p. Since the first term
on the right-hand side of Eq. (7) is zero we get

dω0

dp
= vT

⊥vnoise. (8)

Now returning to the stochastic problem, we see that the
measure which quantifies the phase wandering as a result of
parameter noise is just the derivative of the frequency with
respect to the parameter containing the noise. This implies that
for the oscillators under consideration, phase fluctuations due
to noise in a particular parameter can be completely eliminated
by tuning the system to the point at which dω0/dp = 0.

B. Amplitude-phase noise conversion

Other noise sources, such as additive thermal noise, will
not, in general, be equivalent to a parameter fluctuation, and
typically it will not be possible to eliminate the resulting phase
noise completely. To see how to reduce the effects of such a
noise source, we write the stochastic equation for the phase
variable in Eq. (2) explicitly,

φ̇ =
N−1∑
n=1

∂fN (X1,0, . . . ,XN−1,0)

∂Xn

xn

+ vnoise,N (X1,0, . . . ,XN−1,0)�. (9)

While the last term originates from the noise force acting
directly on the phase variable, the first N − 1 terms account for
the phase drift due to noise conversion from other fluctuating
variables xn to the phase. For oscillators based on a high-Q
resonator, amplitude-phase noise conversion in a simple two-
variable description is often depicted as limiting the operating
amplitude, since this source of phase noise increases when
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the resonator is driven into the nonlinear regime. However, we
now see that the conversion of noise from the variable xn to the
phase is completely eliminated by operating at ∂ω0/∂Xn = 0.
Note that this is a partial derivative, in contrast with the full
derivative that appears in Eq. (8).

III. FEEDBACK OSCILLATOR BASED ON A NONLINEAR
RESONATOR

Precise time and frequency references are typically built
around high-Q resonators, since high-Q reduces phase noise
in the linear regime [15]. In the high-Q limit, the standard
feedback oscillator is effectively described by a complex
amplitude equation that captures the slow dynamics near the
high natural frequency ω̄0 of its weakly nonlinear resonating
element [2,3,5,16]

dA

dT
=

(
−1

2
+ i

3

8
|A|2

)
A − i

s

2
ei�ei�, (10)

where T = tω̄0/Q is a slow time scale, A = aei� is the
complex amplitude, � is the phase shift of the feedback, and
s is the feedback level, which is assumed to be the output of
a saturated amplifier and so is independent of the magnitude
|A| of oscillation.1 Separating Eq. (10) into real and imaginary
parts gives the equations

da

dT
= −a

2
+ s

2
sin � = fa(a),

(11)
d�

dT
= 3

8
a2 − s

2

cos �

a
= f�(a).

In correspondence with the general description of the
previous section, the first equation has the fixed point a0 =
s sin �, the oscillation frequency is 	0 = f�(a0), and the
projection vector given by the zero mode of the transposed
Jacobian is

vT
⊥ =

[
−

(
∂f�

∂a

)
(

∂fa

∂a

) ,1

]
=

[
cos �

s sin2 �
+ 3

2
s sin �,1

]
. (12)

We can now analyze the oscillator phase noise due to various
anticipated noise sources.

A. Feedback noise

Noise in the saturated feedback signal is expressed in
the complex amplitude description by two noise vectors,
one representing fluctuations in the feedback amplitude and
the other representing fluctuations in the feedback phase. Since
the noise in the feedback phase is more dominant for a saturated
feedback [3,4], as a first example of our formalism we calculate
the phase sensitivity to this noise source, which is expressed
by fluctuations in the parameter �. The corresponding noise
vector is vT

� = (∂fa/∂�,∂f�/∂�). Using the explicit form of
v�,v⊥ or the expression derived in Sec. II A gives

vT
⊥v� = d	0

d�
= 3s2 sin � cos �

4
+ 1

2 sin2 �
. (13)

1The analysis is easily extended the case of a nonsaturated amplifier.

At two phase-shift values �1,2, this expression is zero and
the oscillator is insensitive to the phase noise of the feedback
signal. The explicit values of �1,2 are given in Eq. (A7) in the
appendix. These points bifurcate at the critical Duffing point
for which �1 = �2 = 2π/3. As we already noted, the ability
to eliminate the feedback phase noise at the critical Duffing
point has been previously established [3,4].

The second contribution of the feedback noise to the phase
drift comes from noise in the feedback level. This noise is
expressed by fluctuations in the parameter s, for which the
noise sensitivity is

vT
⊥vs = d	0

ds
= 3s sin2 �

4
. (14)

This noise cannot be eliminated in the same manner as
feedback phase noise, since the oscillator amplitude is zero
at � = nπ ; however, we show in Sec. III C how it can be
significantly reduced.

B. Amplitude-phase noise conversion

Based on the analysis of Sec. II B, complete elimination of
amplitude-phase noise conversion is achieved in the present
oscillator for

∂	0

∂a0
= 3

4
a0 + s

2

cos �

a2
0

= 3s

4
sin � + 1

2

cos �

s sin2 �
= 0, (15)

whose real solution �a|φ is given in Eq. (A11) in the
appendix. As the saturation level grows, �a|φ approaches
�1, as illustrated in Fig. 1, which shows these points on the
amplitude-frequency curve for the oscillator, which follows
the well-known Duffing curve. Note also that from Eq. (13)
we have

∂	0(�1)

∂a0
= − 1

2s cos(�1)
, (16)

so as the saturation grows, operating at �1 eliminates the
amplitude-phase noise conversion as well. On the other hand,

−6 −4 −2 0 2 4 6

0.5

1

1.5

2

2.5

3

Ω0

a
0

FIG. 1. (Color online) The amplitude vs frequency curve of the
oscillator described by Eq. (10). The low- and high-amplitude red
dots are �1,2, respectively, for which d	0/d� = d	0/da = 0. The
star is �a|φ for which ∂	0/∂a = 0. The bottom curve is for s = 3,
and the top one is for s = 10, indicating that �1 and �a|φ approach
each other as saturation level increases.
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at the operating point �a|φ we have

d	0(�a|φ)

d�
= 1

2
, (17)

and the feedback phase noise is not reduced here. Thus,
although the points �a|φ,�1 approach each other as saturation
grows, it is better to operate at �1 than at �a|φ .

1. Thermal noise

Thermal noise acting on the resonator degrees of freedom
is manifested as equal independent sources in the two
quadratures. In the complex amplitude representation, this is
described by noise vectors for the two sources, vT

� = (1,0),
and vT

� = (0,1/a). The total phase sensitivity to thermal noise
is given by adding the two noise terms in quadrature

TPS(�) = (vT
⊥v�)2 + (vT

⊥v�)2

= 1

s2 sin2 �
+

(
6s

4
sin � + cos �

s sin2 �

)2

. (18)

Since the first term is the direct phase noise, and the second
results from amplitude-phase conversion, the second term
satisfies vT

⊥v�(�a|φ) = 0. However, the total effect of thermal
noise is minimal at the nearby phase-shift value �TPS, which
satisfies dTPS(�PST)/d� = 0.

C. Optimal operating point for combined noise sources

The four special phase-shift values minimizing the effects
of various noise sources on the feedback oscillator are plotted
in Fig. 2, as a function of the other experimentally controlled
parameter, the saturation level. Since the real physical oscil-
lator is subjected to multiple, uncorrelated noise sources, we
would like to use these results to find its optimal operational
state. We know from Sec. III A that the phase-shift values �1,2

eliminate the feedback phase noise. Since this is a substantial
noise source we would like to eliminate, let us examine the

0 1 2 3 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

s

Δ
/
π

ΔTPS

Δ1

Δ2

Δa|φ

FIG. 2. Special phase-shift values as a function of the drive
amplitude. �1,2, which eliminate the feedback phase noise, bifurcate
at the critical Duffing drive amplitude s = (4/3)(5/4). On increasing
saturation level, �2 approaches π/2, and the other three special
phase-shift values approach π .

sensitivity to feedback amplitude noise at these points. Using
Eq. (14) and the high saturation limit of Eq. (A6) allows us to
deduce the limits

lim
s→∞ vT

⊥vs(�2) ∼ s → ∞,

(19)
lim
s→∞ vT

⊥vs(�1) ∼ s−1/3 → 0.

Therefore, �1 is a preferable operating point from the feedback
noise perspective because for high saturation it eliminates
noise in both quadratures of the feedback, while operating at
�2 only eliminates the feedback phase noise, with the feedback
amplitude noise becoming more important with increasing
saturation level.

To consider the effects of thermal noise at �1, we use
Eq. (16), which implies that for large saturation amplitude-
phase conversion is diminished at this point, and together with
the limit lims→∞ a0(�1) ∼ s1/3, we derive the results

lim
s→∞ vT

⊥v�(�1) ∼ s−1 → 0,

(20)
lim
s→∞ vT

⊥v�(�1) ∼ s−1/3 → 0.

Thus, in the large saturation limit, operating at �1 also
eliminates both components of thermal noise.

Noise in the quality factor is expressed by fluctuations in
the linear damping coefficient in Eq. (10). Since we consider
the damping to be small, fluctuations with the same relative
intensity as other parameters will typically yield a considerably
smaller effect on the phase drift. However, it is instructive to
include these fluctuations in the analysis as well. The noise
vector representing them is vT

Q = (−a/2,0); it is transferred to
phase noise through amplitude-phase conversion and satisfies

vT
⊥vQ(�a|φ) = 0, lim

s→∞ vT
⊥vQ(�1) ∼ s−2/3 → 0. (21)

Furthermore, since generally damping terms do not appear
in the dynamic equation for the phase variable, fluctuations in
nonlinear damping coefficients are also eliminated at �a|φ . For
the often encountered case of nonlinear damping proportional
to the amplitude cubed [16–18], the phase sensitivity at the
high saturation limit scales as a constant (∼s0) at �1.

Therefore, we have shown that increasing the saturation
level of the amplifier and setting the phase shift to �1, which in
this case approaches π , optimizes the oscillator’s performance.
This operational mode eliminates the contributions of the
feedback noise, thermal noise, and quality factor fluctuations
on the oscillator’s phase drift. The phase sensitivity to
combined noise sources, whose minimum is obtained for a
phase-shift value that approaches �1 as saturation grows,
and the breakdown to the contributions of the different noise
sources are shown in Fig. 3. These results were recently
verified by experimental phase noise measurements of an
oscillator based on a nanomechanical resonator [11].

Additional sources of phase noise might originate from the
elasticity mechanism of the resonator [19]. These are expressed
by fluctuations in the resonance frequency and nonlinearity
coefficient. Fluctuations in the resonance frequency directly
translate into phase noise, whose level is approximately
constant in the experimental parameters. Fluctuations in the
nonlinearity coefficient grow as a function of the saturation
level; however, if the fluctuations in both these parameters are
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FIG. 3. (Color online) Phase sensitivity as a function of the phase
shift. (a) Different contributions (vT

⊥vnoise)2 to the phase noise for
s = 3. We see that the feedback phase noise curve is zero at �1,2 and
that those of the real component of thermal noise and quality factor
noise are zero at �a|φ , which is slightly to the right of �1. (b) The total
phase sensitivity, which is a sum of all the curves in (a), for different
values of the drive level. We see that as saturation level grows, the
optimal operating point approaches �1, denoted with a red asterisk,
and the noise level at this point decreases.

correlated, we can potentially design the resonator nonlinearity
in such a way that these contributions cancel each other out.

IV. THE OSCILLATOR SPECTRUM

The simplicity of Eq. (5) allows us to derive the full
oscillator noise spectrum for a variety of noise sources (white,
colored, 1/f . . .). Many of these results may be found in the
previous literature [1,2,7,8,20,21], but the present approach
gives a particularly compact and general formulation for
the class of oscillators we consider. We assume a stationary
Gaussian noise source with the autocorrelation 〈�(t2)�(t1)〉 =
RN (t2 − t1), and the spectrum given by a fourier transform
SN (ω) = F[RN (t)]. Then φ(t + τ ) − φ(t) = P

∫ t+τ

t
�(t ′)dt ′

(τ > 0) is also Gaussian with P = vT
⊥vnoise, the noise projec-

tion constant, and variance V (τ ) = 〈(φ(t + τ ) − φ(t))2〉 given
by [8]

V (τ ) = 2P 2
∫ τ

0
(τ − v)RN (v)dv

= 4P 2

π

∫ ∞

0
SN (ω)

[
sin(ωτ/2)

ω

]2

dω. (22)

The variance V (τ ) typically grows with τ : for a noise source
with correlation time τc,2 for large-enough τ � τc the variance
increases linearly with time V (τ )  P 2SN (0)τ corresponding
to phase diffusion.

The spectrum of the oscillator is the Fourier transform of
the autocorrelation function 〈D(t + τ )D(t)〉, where D(t) is the
displacement of the resonator at time t . We take this to be given
by D(t) = a cos(ω0t + φ). Neglecting amplitude fluctuations
and after transients have died out, the oscillator correlation
function is [2,7,22]

〈D(t + τ )D(t)〉  a2

2
e−V (τ )/2 cos(ω0τ ) ≡ R(τ ), (23)

where the Gaussian properties of φ and the identity 〈eix〉 =
e−〈x2〉/2 for a zero mean Gaussian stochastic variable x have
been used. We see that this autocorrelation function of the
oscillator is indeed a stationary stochastic process, as expected
for a system without an external time reference. The oscillator
noise spectrum S(ω) = F[R(τ )] can be written as S(ω) =
a2[S̄(ω + ω0) + S̄(ω − ω0)]/4 with

S̄(ω) = F[e−V (τ )/2]. (24)

The oscillator spectrum about the carrier frequency is, thus,
given by evaluating this Fourier transform.

For large frequency offsets, the Fourier transform in
Eq. (24) is dominated by small times where the variance V (τ )
is small. In this case the exponential can be expanded to first
order, so, for ω �= 0,

S̄(ω)  − 1
2F[V (τ )] = P 2 SN (ω)

ω2
. (25)

This corresponds to the well-known Leeson results [15] for
the oscillator noise spectrum, namely an ω−2 dependence for
a white noise source, ω−3 for 1/f noise, and so on. On the
other hand, for ω → 0, the Fourier transform is determined by
the long-time behavior when the variance V (τ ) gets large,
and so the full exponential expression must be used. For
small-enough noise, V (τ ) ∼ 1 only at long-enough times such
that the diffusion behavior V (τ ) ∝ τ applies. In this case, the
Fourier transform gives a Lorentzian, so for these frequencies

S̄(ω)  4P 2SN (0)

4ω2 + [P 2SN (0)]2
. (26)

The frequency where the spectrum crosses over from the
Lorentzian Eq. (26) to the power law tail Eq. (25) will be
of order τ̄−1, where τ̄ is the time at which the variance V (τ )
grows to be O(1). For a white noise source the Lorentzian
leads directly to Eq. (25) at large frequencies.

2We assume a finite correlation time.
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FIG. 4. The spectrum of an oscillator subjected to 1/f noise. The exact solution is F[e−V (τ )/2] with V (τ ) given by Eq. (31). For very weak
noise, small offset frequencies are described by the Lorentzian (26); however, for stronger noise, this frequency regime is approximated by
the Gaussian (33) as shown in (a) and (b), respectively. Both curves approach the expression (25) at large frequencies. Other parameters are
ωc = 0.1, P 2 = 1, and ωm = 10.

Oscillator phase noise for a general limit cycle and white
or colored noise has been looked at previously. For a general
limit cycle both the noise vector and projection vector will
be time dependent around the limit cycle. Although the
oscillator spectrum in the general case is still given by (24),
the corresponding phase variance changes to

Vgeneral(τ ) =
∫ τ

0
du

∫ u

u−τ

dvRN (v)

× vT
⊥(u)vnoise(u)vT

⊥(u − v)vnoise(u − v). (27)

This much more complicated expression [cf. Eq. (22)]
has been evaluated only in certain limits. Demir et al. [7]
looked at the case of white noise (τc → 0) for which
expressions Eqs. (25) and (26) apply with the replacement
P 2 → t−1

p

∫ tp
0 [vT

⊥(t)vnoise(t)]2dt (i.e., the mean square value
of the noise projection). On the other hand, Demir [8]
looked at the case of colored noise with correlation time
much longer than the oscillator period τc � tp, deriving the
results Eqs. (25) and (26) but now with the replacement
P → ∫ tp

0 vT
⊥(t)vnoise(t)dt (i.e., P 2 is replace by the square

of the mean of the noise projection around the limit
cycle). Nakao et al. [14] look at general colored noise
but derive results only for the Lorentzian component
of the spectrum (not the tails further away from the
carrier) given by the long-time, diffusive behavior of V (τ ).
They find a more general expression for the diffusion
constant, leading to the replacement in Eq. (26) P 2SN (0) →∫ ∞
−∞ dvRN (s) t−1

p

∫ tp
0 duvT

⊥(u)vnoise(u)vT
⊥(u − v)vnoise(u − v).

For the special class of oscillators considered in the present
work, both vnoise,vT

⊥ are constant and our expression (22)
encompasses these limiting cases.

A. Oscillator spectrum for 1/ f noise

An interesting special case that arises in may physical
implementations is a 1/f noise source (or, more generally,

1/f (α−1) with 1 < α � 2). Using the integral∫ ∞

0

1

(2πf )α + xα
dx = 21−απ2−α

α sin
(

π
α

) (f −α)
α−1
α , (28)

a convenient representation of a 1/f (α−1) spectrum, with a
low-frequency cutoff to eliminate the divergence as f → 0
and give a finite correlation time is

SN (f ) ∝
∫ ∞

ωc

1

(2πf )α + xα
dx. (29)

We focus on the pure 1/f case given by α = 2, so the noise
spectrum is

SN (f ) = 4I 2
∫ ∞

ωc

dx

x2 + (2πf )2

= I 2

|f | − 4I 2 arctan[ωc/(2πf )]

2πf
. (30)

The corresponding phase variance is [8]

V (τ ) = 2P 2I 2

ω2
c

[2ωcτ − 1 + e−ωcτ − τωce
−ωcτ

+ (τωc)2E(τωc)], (31)

with E(x) = ∫ ∞
1 dye−xy/y the exponential integral function.

Note that for τ � ω−1
c , V (τ ) ∝ τ gives phase diffusion, but,

for shorter times τ � ω−1
c ,

V (τ ) ∝ τ 2
[

3
2 − γ − log(ωcτ )

]
, (32)

where γ  0.58 is the Euler-Mascheroni constant.
For very weak noise, the arguments of the preceding

section apply, leading to the results Eqs. (26) and (25), i.e., a
Lorentzian with ω−3 tails. However, since we might expect the
cutoff ωc to be small, even for not-too-large noise strengths it
is possible for the phase variance V (τ ) to become comparable
to unity for times that are still small enough for Eq. (32) to
apply rather than the diffusive behavior. The resulting Fourier
transform Eq. (24) can be approximately evaluated in this case
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by replacing the log(ωcτ ) term in Eq. (32) by the constant
log(ωc/ωm), where ωm represents the frequency range over
which we want to approximate. The corresponding spectrum
is a Gaussian,

S̄(ω) 
√

π

2a
e
− ω2

4a2 (33)

with a2 = P 2I 2[3/2 − γ − log(ωc/ωm)]. The resulting
oscillator spectra for weak and strong noise intensities are
shown in Fig. 4. A Gaussian spectrum near the carrier
frequency also results from the noise spectrum 1/f (1−ε)

with 0 < ε � 1 [23], and, for a rectangle noise spectrum, a
Lorentzian and Gaussian are accepted in the weak and strong
noise limits, respectively [24].

V. CONCLUSIONS

We have demonstrated an analytical method for calculating
the phase sensitivity of a class of oscillators, which allows for
complete elimination of certain phase noise attributes. We have
applied this method to the standard feedback Duffing oscillator
and exposed an operational mode of this oscillator which
diminishes both components of the feedback noise and thermal
noise and noise in the damping mechanisms. This, therefore,
offers an optimal operational state of the oscillator which
uses the resonator nonlinearity to reduce its phase noise and
disproves the common perception that amplitude-phase noise
conversion necessarily degrades the oscillators performance at
the nonlinear regime. We have also studied the full oscillator
noise spectrum for white and colored noise sources. For a white
noise source, or noise with a short correlation time, the near-
carrier spectrum is Lorentzian and so varies as (ω − ω0)−2

towards larger frequencies. For the often encountered case of
1/f noise the near-carrier spectrum is a Lorentzian for weak
noise, but, as the noise level grows, it is well approximated
by a Gaussian; in both cases the phase noise spectrum crosses
over to (ω − ω0)−3 away from the carrier frequency.
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APPENDIX: EXPLICIT EXPRESSIONS FOR SPECIAL
PHASE-SHIFT VALUES

1. Feedback phase noise

The phase-shift values for which feedback phase noise is
eliminated are given by equating Eq. (13) to zero,

3s2 sin � cos �

4
+ 1

2 sin2 �
= 0, (A1)

which is equivalent to

x4 − 2x3 + 2x + 4

C
− 1 = 0, (A2)

with x = cos 2� and C = 9s4/16. The two real solutions of
this equation are

x1 = 1
2 (1 − r + q), x2 = 1

2 (1 − r − q), (A3)

with r = √
1 + yR , q =

√
3 − r2 + 2/r , and yR being a real

root of the equation

y3 − (1 + y)
16

C
= 0, (A4)

whose discriminant is

D = −256(27C − 64)

C3
. (A5)

Since the coefficients of Eq. (A4) are real, for 0 < C < 64/27
it has three real roots; however, two of them are negative and
smaller than −1, so r is imaginary. For the third, positive
root, on increasing C the value of q changes from imaginary
to real at C = 64/27, which is the critical Duffing point,
corresponding to the drive amplitude s = (4/3)5/4 [16]. The
corresponding root is

yR = 2{31/3[
√

3C3(27C − 64) + 9C2]2/3 + 32/34C}
3C[

√
3C3(27C − 64) + 9C2]1/3

= 8√
3C

cosh

{
1

3
arctanh

[√
3C3(27C − 64)

9C2

]}
, (A6)

and the phase-shift values which solve Eq. (A1) are

�1,2 = π − arccos(x1,2)

2
. (A7)

2. Amplitude-phase noise conversion

Equation (15) is equivalent to

(1 − x)3 − 1 + x

C
= 0, (A8)

whose negative discriminant is

D = −4(27C + 1)

C3
. (A9)

Equation (A8) thus has one real solution, which is

xa|φ = 1 + [
√

3C3(27C + 1) − 9C2]1/3

32/3C

− 1√
3[

√
3C3(27C + 1) − 9C2]1/3

, (A10)

and Eq. (15) is thereby solved by

�a|φ = π − arccos(xa|φ)

2
. (A11)
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