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We recently described a general solution to the phase-matching problem that arises when one wishes to per-
form an arbitrary number of nonlinear optical processes in a single medium [Phys. Rev. Lett. 95, 133901
(2005)]. Here we outline in detail the implementation of the solution for a one-dimensional photonic quasic-
rystal, which acts as a simultaneous frequency doubler for three independent optical beams. We confirm this
solution experimentally using an electric-field poled KTiOPO, crystal. In optimizing the device, we find—
contrary to common practice—that simple duty cycles of 100% and 0% may yield the highest efficiencies, and
we show that our device is more efficient than a comparable device based on periodic quasi-phase matching.
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1. INTRODUCTION

Three-wave mixing is a nonlinear optical process that can
take place within dielectric materials having a nonlinear
X coupling coefficient. Such processes are used for a va-
riety of optical frequency conversion applications. Usu-
ally, due to dispersion, the three interacting beams do not
propagate in phase, and so efficient energy transfer be-
tween them is prevented [1]. One of the common methods
to solve this problem, called quasi-phase matching
(QPM), is to periodically modulate the sign of the relevant
component of the nonlinear dielectric tensor at a period
corresponding to the phase mismatch [1,2]. This approach
is very successful, but unless one is extremely lucky, it is
limited to the phase matching of a single optical process.
In recent years, the need to simultaneously phase match
several different processes arose in numerous applica-
tions such as the creation of multiple radiation sources
[3], of multicolored solitons [4], of multipartite entangle-
ment sources [5], and for all-optical processing [6]. This
need was addressed by developing ad hoc generalizations
for the quasi-phase-matching procedure, based on either
periodic structures in one dimension [7] (for noncollinear
processes) and two dimensions [8-10] or specific quasip-
eriodic structures in one [3,11-14] and two [15] dimen-
sions. In a recent publication [16, henceforth LAB], we ex-
plained how to solve the most general problem of multiple
phase matching—designing a device to phase match an
arbitrary set of processes defined by any given set of
phase-mismatch values. The LAB solution is based on the
general observation that the phase-matching problem is a
consequence of momentum conservation, and that in crys-
talline matter, i.e., matter with long-range order [17], mo-
mentum conservation is replaced with crystal-momentum
conservation. Thus, all that one needs to do is to design a
nonlinear photonic crystal (NPC)—whether periodic or
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quasiperiodic—whose Fourier transform is peaked at all
the required mismatch wave vectors. Here we present the
first experimental realization of a device using this gen-
eral solution: a one-dimensional three-wave doubler.

Note that other schemes for multiple harmonic genera-
tion have been demonstrated before [12—-14]. Neverthe-
less, we choose this relatively simple application of the
LAB solution, as it allows us to provide a detailed peda-
gogical description of the approach. Other than demon-
strating that the LAB solution indeed works, we wish to
clarify all the steps in the design process, so that others
will be able to implement it as well. We stress that the so-
lution is general and is not limited to such simple appli-
cations.

2. SIMULTANEOUS PHASE MATCHING OF
SEVERAL INTERACTIONS

We consider second-order nonlinear optical interactions
in which three beams couple through the nonlinear sus-
ceptibility x2. For a planar process in which two constant
undepleted beams, E; and E,, give rise to a third output
beam Ej, its integrated field amplitude is given by

E;(Ak) = Ff g(r)exp(iAk - r)d?r, (1)
A

where A is the interaction area and I' is a parameter de-
pending on the amplitudes of the incoming waves, on the
indices of refraction of all three waves, on the strength of
the relevant component of the nonlinear susceptibility
tensor d;;, and on the interaction width W. For example,
for sum-frequency generation in mKks, r
=w3d; ;B 1Ey/ic’k3W, where c is the speed of light in
vacuum. The function g(r) gives the spatial dependence of
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the relevant nonlinear coupling coefficient, and Ak is the
phase mismatch vector of the interacting waves. For sum-
frequency generation Ak would be ki +ky—ks.

It is clear from Eq. (1) that the intensity of the output
beam is proportional to the Fourier spectrum of the func-
tion g(r), evaluated at the mismatch vector Ak. Thus, if
we wish to simultaneously phase match a set of D three-
wave optical processes, characterized by phase-mismatch
vectors AkY), j=1,...,D, we should design the spatial
structure of g(r) so that its Fourier spectrum is peaked at
all the D mismatch vectors. For a single process, the stan-
dard QPM solution [1,2] is to design a one-dimensional
NPC with a period of 27/|Ak|, for which there is a first-
order Bragg peak in the spectrum at Ak. The LAB solu-
tion shows how to design an appropriate NPC—whether
periodic or quasiperiodic—such that its spectrum con-
tains Bragg peaks at any given set of D mismatch vectors.
The approach that LAB adopt for this purpose is based on
the so-called dual-grid method, originally developed by de
Bruijn [18] and later generalized [19-21] to become one of
the standard methods for creating tiling models of quasi-
crystals [22].

The reader is encouraged to consult LAB [16] for a com-
plete and rigorous treatment of the most general two-
dimensional multiple phase-matching problem, which we
do not repeat here. Instead, we give a detailed demonstra-
tion of the LAB solution in one dimension, where all the
optical processes are chosen to be collinear. In this case,
the implementation of the dual-grid method for the de-
sign of the NPC, as well as the experimental fabrication of
the device, are relatively simple. Nevertheless, we can
still design nontrivial and interesting devices, such as the
three-wave doubler, implemented here. The basic idea is
to find a set of one-dimensional tiling vectors a, i
=1,...,D, with which we can generate a one-dimensional
tiling of the line, whereby a tile is simply an interval on
the line. We then convert the tiling into an NPC by fabri-
cating whole strips normal to the tiles along the line.

Before starting, we wish to point out that in special
cases, the D phase-mismatch vectors AkY”) may be inte-
grally dependent. This means that one can use fewer than
D wave vectors to generate the NPC and still have Bragg
peaks at all D points. It is then a matter of choice whether
to use the full set of dependent vectors—although, as
pointed out by LAB, it may be difficult in this case to con-
trol the intensities of the peaks—or to prefer a smaller set
of independent vectors. Here we keep all mismatch vec-
tors and treat them as if they were integrally indepen-
dent.

3. DESIGNING A ONE-DIMENSIONAL
THREE-WAVE DOUBLER

We wish to design a device that will simultaneously phase
match three collinear second-harmonic-generation pro-
cesses, for three different wavelengths in the fiber tele-
com C band: 1530, 1550, and 1570 nm. We choose to use
the nonlinear crystal KTiOPO4 and operate at a tempera-
ture of 100 °C. At these conditions, the phase-mismatch
values for the three processes are [23,24]: ARD
=0.263 um™!, AR?=0.256 um™, and Ak®)=0.249 um,
respectively. Thus, we need to design an NPC whose Fou-
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rier spectrum contains three collinear wave vectors with
these dimensions, as shown schematically in Fig. 1(a).
In what follows, we describe the design of such a struc-
ture, as a particular example of the LAB solution for D
collinear processes. Generalizing from D=3 processes to
an arbitrary number D of processes, follows directly by re-
placing all three-component and two-component vectors
below by D-component and (D-1)-component vectors, re-
spectively. Generalizing to higher-dimensional processes
requires the use of the full solution, as described by LAB.

A. Finding the Tiling Vectors

To calculate the corresponding three collinear tiling vec-
tors, a®, i=1,...,3, we first construct a single three-
component vector k;=(AEY, AR AEG)) from the three
given mismatch values. This vector spans a one-
dimensional subspace of an abstract three-dimensional
vector space. We complete it to a basis of the three-
dimensional space by adding two vectors qs and g3 or-
thogonal to k;. These are, of course, not unique, and
we choose them to be q9=(0.648,-0.342,-0.333) and
q3=(-0.342,0.667,-0.324). We use these three vectors as
the columns of a 3 X3 nonsingular matrix,

K AR q(21) qgl)

K® | = Ak® g g |, )
K® AR® q(23) q(33)
whose rows KV, j=1,...,3, span the three-dimensional

vector space as well. We then find the three dual-basis
vectors, denoted

AD\  [a® B pD
A? | =|a® P p@
AD) @ p® p®

, 3)

by solving the three-dimensional orthogonality relations:
AV KV =275, (4)

Each row of the matrix (3) is a dual-basis vector of the
form AV =(a¥),b"). The ¢\ are the three required collin-
ear tiling vectors, whose values are calculated to be aV
=8.395 um, a'?=8.165 um, and a®=7.950 um. The two-
dimensional vectors b™=(6.283,0), b®=(0,6.283), and
b® =(-6.635,-6.453) can be used, as explained by LAB,
to analytically calculate the Fourier transform of the sim-
plest possible NPC (see Subsection 3.C) in order to deter-
mine the expected efficiencies for the different nonlinear
processes.

B. Constructing the Tiling
If we were now asked to generate all points at integral
linear combinations of the three tiling vectors, we would
get the unwanted outcome of a dense filling of the real
line. To avoid this situation, we construct the dual grid,
whose topology determines which of the integral linear
combinations of the tiling vectors are to be included in the
one-dimensional tiling.

The dual grid is constructed by associating with each
mismatch vector AkY), j=1,...,3, an infinite family of
parallel lines separated by a distance L;=2m/ AKY), as il-
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Fig. 1. (Color online) Illustration of the LAB solution for designing a one-dimensional NPC for multiple collinear optical processes,
using the dual-grid method. (a) Required mismatch vectors. (b) Dual grid, in which each family of lines is shown with a different gray
level (different color online). (¢) Tiling of the real-space line according to the order in which lines of different families appear in the dual
grid. (d) Associating a given duty cycle with each tiling vector. Positively poled segments are shown in dark gray (blue online), and nega-

tively poled segments are shown in white.

lustrated in Fig. 1(b). The set of all families together con-
stitutes the dual grid. We use the freedom to shift each
family from the origin by an arbitrary value of f;L;, where
0=f;<1, so that lines from different families never ex-
actly coincide. Because the mismatch vectors are indepen-
dent over the integers, such a shift produces a so-called
gauge-transformation [20,21], which has no effect on the
resulting NPC.

The rest follows immediately, as the required order of
the tiles in the real-space structure is given by the order
in which lines of different families appear in the dual
grid. This is illustrated in Fig. 1(c). This is the sense in
which the topology of the dual grid determines the real-
space tiling in this trivial one-dimensional setting. The
duality is a statement that each line in the grid is associ-
ated with a tile, or interval, in the tiling; and each inter-
val in the grid with a vertex of the tiling. In our example,
approximately 400 lines are required in each family to
generate a 1 cm long one-dimensional nonlinear photonic
quasicrystal.

C. Building a Nonlinear Photonic Crystal from the
Tiling

To create an actual nonlinear photonic quasicrystal, we
modulate the relevant component of the nonlinear suscep-
tibility tensor x® according to the constructed tiling.
Technology usually permits us to use a binary modulation
of x? so that the actual crystal can be represented by a
normalized function g(r)=+1. The simplest representa-
tion from a theoretical standpoint would be to attach a
thin strip of value g(r)=1 to every vertex of the tiling,

3 : i ; 2% g
Fig. 2. Optical microscope image of the demonstrated NPC. The
prominent elements correspond to the oV tiling vector, poled
with a 100% duty cycle. Their width is 8.5 um. The distances be-
tween these elements are quasiperiodically ordered along with

the a® and a® tiling vectors, whose widths are 8.1 um and
7.9 pum, respectively, and which are poled with a 0% duty cycle.

while assigning the background a value of g(r)=-1. This
is equivalent to a simple convolution of the strip with &
functions at the vertices of the tiling and therefore gives
the simplest analytical expression for the Fourier trans-
form of the function g(r) [16]. Nevertheless, it does not
necessarily produce an optimal NPC—one in which the
strongest Bragg peaks are associated with the three mis-
match vectors. In general, one can use a numerical proce-
dure in order to optimize the required Bragg peaks. See,
for example, the treatment by Norton and de Sterke [25].
Here we want to give a few quick-and-simple
solutions—in addition to the thin strips—that are worth
trying if one does not wish to deal with numerical optimi-
zation.
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Fig. 3. (Color online) Spectral shaping. Each panel shows the
magnitude of the Fourier transform for a 1 cm long NPC made to
phase match the three collinear processes, described in the text.
In each panel, one of the tiling vectors is given a duty cycle of
100%, denoted as 1, and the remaining two a duty cycle of 0%, or
0. Each panel also shows a piece of the corresponding real-space
representation of the NPC, where the smallest element size is
8 um.

A second option would be to use strips whose widths
are equal to the tile vectors and simply to change the sign
of g(r) from one strip to the next. In this way, exactly half
the tiles will give strips of value g(r)=1, and the other
half will give strips of value g(r)=—1. The generated set of
strips would be analogous to an antiferromagnetic quasi-
crystal [26,27], whose Fourier transform could also be cal-
culated analytically. We have found that this option does
not yield an optimal NPC for this application.

A third option, and the one which we actually imple-
mented, is again to use strips whose widths are equal to
the tile vectors, but this time associate a so-called duty
cycle with each tiling vector. This is done by dividing each
tiling vector into two segments, and assigning a value of
g(r)=1 to one segment, and g(r)=-1 to the other. The duty
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cycle is the fraction of each strip with g(r)=1. This gen-
eral procedure is shown schematically in Fig. 1(d). It gives
us the ability to perform simple spectral shaping. By
varying the three duty cycles associated with the three
tiling vectors, we can engineer the magnitudes of the Fou-
rier coefficients of the three required Bragg peaks. What
we actually find—contrary to common practice
[3,11,28]—is that the optimal NPCs are obtained when we
use duty cycles of either 100% or 0%. These are also easi-
est to fabricate in terms of the required resolution as we
associate a value of g(r)=1 or g(r)=-1 to tiles as a whole.

In the experimental image of the NPC, shown in Fig. 2,
the tiling vector aM is associated with strips of value
g(r)=1, or a duty cycle of 100%, while the other two have
a value of g(r)=-1, or a duty cycle of 0%. In Fig. 3, we
show numerical calculations of the magnitude of the Fou-
rier transform of g(r), for the three possible assignments
of a value of g(r)=1 to one tiling vector, and a value of
g(r)=-1 to the other two. One clearly sees that in all
cases, there are pronounced Bragg peaks exactly where
we want them to be, but the distribution of intensities
changes as we vary the tiling vector that is assigned a
100% duty cycle. The magnitudes of the Fourier coeffi-
cients are comparable with the 2/7=0.6366 figure of
merit, which is the magnitude of the first-order Fourier
component for a one-dimensional periodic NPC. In fact,
because the efficiency is measured in terms of energy
transfer, it depends on the Fourier intensity and on the
square of the interaction length. Thus, the real compari-
son should be with the efficiency per process of a sequence
of three periodic NPCs, each of length L/3, which is pro-

portional to
1 2\2
—-— | =0.045.
3 7

For the homogeneous nonlinear photonic quasicrystal
that we implement here, the lowest process efficiency is
proportional to (1x0.23)2=0.053 and the highest is pro-
portional to (1 X 0.365)2=0.133, both better than the com-
posite periodic structure.
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Fig. 4. (Color online) Normalized pump wavelength response.
Experiment and simulation results of second-harmonic genera-
tion as a function of pump wavelength. This figure corresponds
with panel (a) of Fig. 3.
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Table 1. Conversion Efficiencies®

Wavelength Experimental Efficiency Theoretical Efficiency Simulated Efficiency
(nm) [1/W] [1/W] [1/W]
1531 1.19%x1073 1.5x1073 1.46x1073
1551 3.37x10™* 6.13x 10 6.83x 1074
1571 3.18x10™* 5.49%x 1074 6.43x107*

“Maximum conversion efficiencies are obtained for the indicated wavelengths. In the simulation, the maximum efficiency of the third process was shifted by +0.4 nm.

The ability to shape the spectrum using different rep-
resentations of the function g(r) can be very useful for
cascaded processes that, to some extent, are better per-
formed in sequence. For example, in multiharmonic gen-
eration, where the outputs of some of the processes serve
as inputs for others, it might be beneficial to give prece-
dence to the efficiencies of the initial processes at the be-
ginning of the NPC and gradually, along the interaction
length, change the balance in favor of the latter processes.

4. EXPERIMENTAL RESULTS

The NPC was fabricated by electric field poling [29] of
KTiOPO,4 and is shown in Fig. 2. The spatial modulation
was performed along 1 cm with a 2 mm X 1 mm cross sec-
tion. To test the NPC, we used a pump beam from a tun-
able external cavity diode laser, followed by an erbium-
doped fiber amplifier, and a fiber polarization controller
whose purpose is to polarize the beam to be perpendicular
to the plane of modulation of the NPC. The pump beam
was then chopped at a frequency of 1 kHz and focused to
a waist of 20 um in the middle of the crystal. Its power
was varied during the experiment in the range of
4-40 mW. The NPC was kept at a constant temperature
of 100 °C. The input pump wavelength was varied in the
range of 1528—-1577nm and the resulting second-
harmonic power was measured using a calibrated silicon
photodiode, followed by a lock-in amplifier. The results
were compared with a simulation employing a split step
Fourier method [30], in which a nondepleted Gaussian
beam was used as a pump. Both results exhibit excellent
agreement, as can be seen in Fig. 4, and show that this
device is indeed most efficient for second-harmonic gen-
eration of the three designated pump wavelengths.

Note that for focused Gaussian beams [31], the actual
peak efficiencies are shifted by 1 nm toward longer wave-
lengths, as compared with the idealized design using
plane-wave interaction. However, with temperature tun-
ing, the results can be shifted in both directions. For the
wavelength range used here, the shift rate is 0.1 nm/°C.
The conversion efficiencies were also calculated theoreti-
cally using the Boyd-Kleinman formalism for focused
Gaussian beams, propagating within a homogeneous non-
linear crystal [31], modified to include the relevant Fou-
rier coefficient. The nonlinear conversion efficiencies for
the wavelengths for which conversion was maximal are
shown in Table 1. The small discrepancies between theory
and simulation are attributed to the assumption, made in
the theoretical calculation, that each process is affected
only by its relevant Fourier component. In the simulation,
the propagating waves experience small but still nonneg-
ligible contributions from close-by spectral components.

5. SUMMARY

We present what we believe to be the first experimental
realization of a nonlinear optical device employing the
general solution of the phase-matching problem, given by
LAB. The demonstrated device is a one-dimensional
three-wave doubler. We show that by simply using 100%
or 0% duty cycles, each of the three-wave doubling pro-
cesses exhibits high efficiency. Moreover, the efficiencies
are all higher than for a device employing a periodic
modulation with the same overall interaction length. We
demonstrate the ability to perform spectral shaping of the
response by changing the duty cycles associated with the
different tiles. This allows us to strengthen certain pro-
cesses at the expense of others. It should be stressed once
more that the LAB solution is general and can support
any set of nonlinear processes, not only for one-
dimensional problems but also in two or three dimen-
sions, without any symmetry restrictions. In addition,
this general method can be applied to a broad range of
problems from generation of radiation sources through
all-optical processing to generation of entangled photons
in quantum optics applications.
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