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Experimental confirmation of the general solution
to the multiple-phase-matching problem
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We recently described a general solution to the phase-matching problem that arises when one wishes to per-
form an arbitrary number of nonlinear optical processes in a single medium [Phys. Rev. Lett. 95, 133901
(2005)]. Here we outline in detail the implementation of the solution for a one-dimensional photonic quasic-
rystal, which acts as a simultaneous frequency doubler for three independent optical beams. We confirm this
solution experimentally using an electric-field poled KTiOPO4 crystal. In optimizing the device, we find—
contrary to common practice—that simple duty cycles of 100% and 0% may yield the highest efficiencies, and
we show that our device is more efficient than a comparable device based on periodic quasi-phase matching.
© 2007 Optical Society of America
OCIS codes: 190.2620, 190.4160, 190.4360.
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. INTRODUCTION
hree-wave mixing is a nonlinear optical process that can
ake place within dielectric materials having a nonlinear
�2� coupling coefficient. Such processes are used for a va-
iety of optical frequency conversion applications. Usu-
lly, due to dispersion, the three interacting beams do not
ropagate in phase, and so efficient energy transfer be-
ween them is prevented [1]. One of the common methods
o solve this problem, called quasi-phase matching
QPM), is to periodically modulate the sign of the relevant
omponent of the nonlinear dielectric tensor at a period
orresponding to the phase mismatch [1,2]. This approach
s very successful, but unless one is extremely lucky, it is
imited to the phase matching of a single optical process.
n recent years, the need to simultaneously phase match
everal different processes arose in numerous applica-
ions such as the creation of multiple radiation sources
3], of multicolored solitons [4], of multipartite entangle-

ent sources [5], and for all-optical processing [6]. This
eed was addressed by developing ad hoc generalizations

or the quasi-phase-matching procedure, based on either
eriodic structures in one dimension [7] (for noncollinear
rocesses) and two dimensions [8–10] or specific quasip-
riodic structures in one [3,11–14] and two [15] dimen-
ions. In a recent publication [16, henceforth LAB], we ex-
lained how to solve the most general problem of multiple
hase matching—designing a device to phase match an
rbitrary set of processes defined by any given set of
hase-mismatch values. The LAB solution is based on the
eneral observation that the phase-matching problem is a
onsequence of momentum conservation, and that in crys-
alline matter, i.e., matter with long-range order [17], mo-
entum conservation is replaced with crystal-momentum

onservation. Thus, all that one needs to do is to design a
onlinear photonic crystal (NPC)—whether periodic or
0740-3224/07/081916-6/$15.00 © 2
uasiperiodic—whose Fourier transform is peaked at all
he required mismatch wave vectors. Here we present the
rst experimental realization of a device using this gen-
ral solution: a one-dimensional three-wave doubler.

Note that other schemes for multiple harmonic genera-
ion have been demonstrated before [12–14]. Neverthe-
ess, we choose this relatively simple application of the
AB solution, as it allows us to provide a detailed peda-
ogical description of the approach. Other than demon-
trating that the LAB solution indeed works, we wish to
larify all the steps in the design process, so that others
ill be able to implement it as well. We stress that the so-

ution is general and is not limited to such simple appli-
ations.

. SIMULTANEOUS PHASE MATCHING OF
EVERAL INTERACTIONS
e consider second-order nonlinear optical interactions

n which three beams couple through the nonlinear sus-
eptibility ��2�. For a planar process in which two constant
ndepleted beams, E1 and E2, give rise to a third output
eam E3, its integrated field amplitude is given by

E3��k� = ��
A

g�r�exp�i�k · r�d2r, �1�

here A is the interaction area and � is a parameter de-
ending on the amplitudes of the incoming waves, on the
ndices of refraction of all three waves, on the strength of
he relevant component of the nonlinear susceptibility
ensor dij, and on the interaction width W. For example,
or sum-frequency generation in mks, �

�3
2dijE1E2 / ic2k3W, where c is the speed of light in

acuum. The function g�r� gives the spatial dependence of
007 Optical Society of America
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he relevant nonlinear coupling coefficient, and �k is the
hase mismatch vector of the interacting waves. For sum-
requency generation �k would be k1+k2−k3.

It is clear from Eq. (1) that the intensity of the output
eam is proportional to the Fourier spectrum of the func-
ion g�r�, evaluated at the mismatch vector �k. Thus, if
e wish to simultaneously phase match a set of D three-
ave optical processes, characterized by phase-mismatch
ectors �k�j�, j=1, . . . ,D, we should design the spatial
tructure of g�r� so that its Fourier spectrum is peaked at
ll the D mismatch vectors. For a single process, the stan-
ard QPM solution [1,2] is to design a one-dimensional
PC with a period of 2� / ��k�, for which there is a first-

rder Bragg peak in the spectrum at �k. The LAB solu-
ion shows how to design an appropriate NPC—whether
eriodic or quasiperiodic—such that its spectrum con-
ains Bragg peaks at any given set of D mismatch vectors.
he approach that LAB adopt for this purpose is based on
he so-called dual-grid method, originally developed by de
ruijn [18] and later generalized [19–21] to become one of

he standard methods for creating tiling models of quasi-
rystals [22].

The reader is encouraged to consult LAB [16] for a com-
lete and rigorous treatment of the most general two-
imensional multiple phase-matching problem, which we
o not repeat here. Instead, we give a detailed demonstra-
ion of the LAB solution in one dimension, where all the
ptical processes are chosen to be collinear. In this case,
he implementation of the dual-grid method for the de-
ign of the NPC, as well as the experimental fabrication of
he device, are relatively simple. Nevertheless, we can
till design nontrivial and interesting devices, such as the
hree-wave doubler, implemented here. The basic idea is
o find a set of one-dimensional tiling vectors a�i�, i
1, . . . ,D, with which we can generate a one-dimensional

iling of the line, whereby a tile is simply an interval on
he line. We then convert the tiling into an NPC by fabri-
ating whole strips normal to the tiles along the line.

Before starting, we wish to point out that in special
ases, the D phase-mismatch vectors �k�j� may be inte-
rally dependent. This means that one can use fewer than

wave vectors to generate the NPC and still have Bragg
eaks at all D points. It is then a matter of choice whether
o use the full set of dependent vectors—although, as
ointed out by LAB, it may be difficult in this case to con-
rol the intensities of the peaks—or to prefer a smaller set
f independent vectors. Here we keep all mismatch vec-
ors and treat them as if they were integrally indepen-
ent.

. DESIGNING A ONE-DIMENSIONAL
HREE-WAVE DOUBLER
e wish to design a device that will simultaneously phase
atch three collinear second-harmonic-generation pro-

esses, for three different wavelengths in the fiber tele-
om C band: 1530, 1550, and 1570 nm. We choose to use
he nonlinear crystal KTiOPO4 and operate at a tempera-
ure of 100 °C. At these conditions, the phase-mismatch
alues for the three processes are [23,24]: �k�1�

0.263 �m−1, �k�2�=0.256 �m−1, and �k�3�=0.249 �m−1,
espectively. Thus, we need to design an NPC whose Fou-
ier spectrum contains three collinear wave vectors with
hese dimensions, as shown schematically in Fig. 1(a).

In what follows, we describe the design of such a struc-
ure, as a particular example of the LAB solution for D
ollinear processes. Generalizing from D=3 processes to
n arbitrary number D of processes, follows directly by re-
lacing all three-component and two-component vectors
elow by D-component and �D−1�-component vectors, re-
pectively. Generalizing to higher-dimensional processes
equires the use of the full solution, as described by LAB.

. Finding the Tiling Vectors
o calculate the corresponding three collinear tiling vec-
ors, a�i�, i=1, . . . ,3, we first construct a single three-
omponent vector k1= ��k�1� ,�k�2� ,�k�3�� from the three
iven mismatch values. This vector spans a one-
imensional subspace of an abstract three-dimensional
ector space. We complete it to a basis of the three-
imensional space by adding two vectors q2 and q3 or-
hogonal to k1. These are, of course, not unique, and
e choose them to be q2= �0.648,−0.342,−0.333� and
3= �−0.342,0.667,−0.324�. We use these three vectors as

he columns of a 3�3 nonsingular matrix,

�
K�1�

K�2�

K�3�� � �
�k�1� q2

�1� q3
�1�

�k�2� q2
�2� q3

�2�

�k�3� q2
�3� q3

�3�	 , �2�

hose rows K�j�, j=1, . . . ,3, span the three-dimensional
ector space as well. We then find the three dual-basis
ectors, denoted

�
A�1�

A�2�

A�3�� � �
a�1� b2

�1� b3
�1�

a�2� b2
�2� b3

�2�

a�3� b2
�3� b3

�3�	 , �3�

y solving the three-dimensional orthogonality relations:

A�i� · K�j� = 2��ij. �4�

Each row of the matrix (3) is a dual-basis vector of the
orm A�j�= �a�j� ,b�j��. The a�j� are the three required collin-
ar tiling vectors, whose values are calculated to be a�1�

8.395 �m, a�2�=8.165 �m, and a�3�=7.950 �m. The two-
imensional vectors b�1�= �6.283,0�, b�2�= �0,6.283�, and
�3�= �−6.635,−6.453� can be used, as explained by LAB,

o analytically calculate the Fourier transform of the sim-
lest possible NPC (see Subsection 3.C) in order to deter-
ine the expected efficiencies for the different nonlinear

rocesses.

. Constructing the Tiling
f we were now asked to generate all points at integral
inear combinations of the three tiling vectors, we would
et the unwanted outcome of a dense filling of the real
ine. To avoid this situation, we construct the dual grid,
hose topology determines which of the integral linear

ombinations of the tiling vectors are to be included in the
ne-dimensional tiling.

The dual grid is constructed by associating with each
ismatch vector �k�j�, j=1, . . . ,3, an infinite family of

arallel lines separated by a distance L =2� /�k�j�, as il-
j
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ustrated in Fig. 1(b). The set of all families together con-
titutes the dual grid. We use the freedom to shift each
amily from the origin by an arbitrary value of fjLj, where
	 fj
1, so that lines from different families never ex-
ctly coincide. Because the mismatch vectors are indepen-
ent over the integers, such a shift produces a so-called
auge-transformation [20,21], which has no effect on the
esulting NPC.

The rest follows immediately, as the required order of
he tiles in the real-space structure is given by the order
n which lines of different families appear in the dual
rid. This is illustrated in Fig. 1(c). This is the sense in
hich the topology of the dual grid determines the real-

pace tiling in this trivial one-dimensional setting. The
uality is a statement that each line in the grid is associ-
ted with a tile, or interval, in the tiling; and each inter-
al in the grid with a vertex of the tiling. In our example,
pproximately 400 lines are required in each family to
enerate a 1 cm long one-dimensional nonlinear photonic
uasicrystal.

. Building a Nonlinear Photonic Crystal from the
iling
o create an actual nonlinear photonic quasicrystal, we
odulate the relevant component of the nonlinear suscep-

ibility tensor ��2� according to the constructed tiling.
echnology usually permits us to use a binary modulation
f ��2� so that the actual crystal can be represented by a
ormalized function g�r�= ±1. The simplest representa-
ion from a theoretical standpoint would be to attach a
hin strip of value g�r�=1 to every vertex of the tiling,

ig. 1. (Color online) Illustration of the LAB solution for desig
sing the dual-grid method. (a) Required mismatch vectors. (b) D

evel (different color online). (c) Tiling of the real-space line accor
rid. (d) Associating a given duty cycle with each tiling vector. Po
ively poled segments are shown in white.
hile assigning the background a value of g�r�=−1. This
s equivalent to a simple convolution of the strip with �
unctions at the vertices of the tiling and therefore gives
he simplest analytical expression for the Fourier trans-
orm of the function g�r� [16]. Nevertheless, it does not
ecessarily produce an optimal NPC—one in which the
trongest Bragg peaks are associated with the three mis-
atch vectors. In general, one can use a numerical proce-

ure in order to optimize the required Bragg peaks. See,
or example, the treatment by Norton and de Sterke [25].
ere we want to give a few quick-and-simple

olutions—in addition to the thin strips—that are worth
rying if one does not wish to deal with numerical optimi-
ation.

one-dimensional NPC for multiple collinear optical processes,
rid, in which each family of lines is shown with a different gray

the order in which lines of different families appear in the dual
poled segments are shown in dark gray (blue online), and nega-

ig. 2. Optical microscope image of the demonstrated NPC. The
rominent elements correspond to the a�1� tiling vector, poled
ith a 100% duty cycle. Their width is 8.5 �m. The distances be-

ween these elements are quasiperiodically ordered along with
he a�2� and a�3� tiling vectors, whose widths are 8.1 �m and
.9 �m, respectively, and which are poled with a 0% duty cycle.
ning a
ual g

ding to
sitively



a
o
t
h
s
c
c
n

m
t
c
t
g

c
e
u
v
t
r
w
[
u
e
a

t
g
a
s
r
o
g
c
w
c
1
c
m
c
b
t
s
s
o
p

F
t
p
p
p

F
m
p
I
1
0
r
8

F
E
t
w

Bahabad et al. Vol. 24, No. 8 /August 2007 /J. Opt. Soc. Am. B 1919
A second option would be to use strips whose widths
re equal to the tile vectors and simply to change the sign
f g�r� from one strip to the next. In this way, exactly half
he tiles will give strips of value g�r�=1, and the other
alf will give strips of value g�r�=−1. The generated set of
trips would be analogous to an antiferromagnetic quasi-
rystal [26,27], whose Fourier transform could also be cal-
ulated analytically. We have found that this option does
ot yield an optimal NPC for this application.
A third option, and the one which we actually imple-
ented, is again to use strips whose widths are equal to

he tile vectors, but this time associate a so-called duty
ycle with each tiling vector. This is done by dividing each
iling vector into two segments, and assigning a value of
�r�=1 to one segment, and g�r�=−1 to the other. The duty

ig. 3. (Color online) Spectral shaping. Each panel shows the
agnitude of the Fourier transform for a 1 cm long NPC made to

hase match the three collinear processes, described in the text.
n each panel, one of the tiling vectors is given a duty cycle of
00%, denoted as 1, and the remaining two a duty cycle of 0%, or
. Each panel also shows a piece of the corresponding real-space
epresentation of the NPC, where the smallest element size is
�m.
ycle is the fraction of each strip with g�r�=1. This gen-
ral procedure is shown schematically in Fig. 1(d). It gives
s the ability to perform simple spectral shaping. By
arying the three duty cycles associated with the three
iling vectors, we can engineer the magnitudes of the Fou-
ier coefficients of the three required Bragg peaks. What
e actually find—contrary to common practice

3,11,28]—is that the optimal NPCs are obtained when we
se duty cycles of either 100% or 0%. These are also easi-
st to fabricate in terms of the required resolution as we
ssociate a value of g�r�=1 or g�r�=−1 to tiles as a whole.
In the experimental image of the NPC, shown in Fig. 2,

he tiling vector a�1� is associated with strips of value
�r�=1, or a duty cycle of 100%, while the other two have
value of g�r�=−1, or a duty cycle of 0%. In Fig. 3, we

how numerical calculations of the magnitude of the Fou-
ier transform of g�r�, for the three possible assignments
f a value of g�r�=1 to one tiling vector, and a value of
�r�=−1 to the other two. One clearly sees that in all
ases, there are pronounced Bragg peaks exactly where
e want them to be, but the distribution of intensities

hanges as we vary the tiling vector that is assigned a
00% duty cycle. The magnitudes of the Fourier coeffi-
ients are comparable with the 2/�
0.6366 figure of
erit, which is the magnitude of the first-order Fourier

omponent for a one-dimensional periodic NPC. In fact,
ecause the efficiency is measured in terms of energy
ransfer, it depends on the Fourier intensity and on the
quare of the interaction length. Thus, the real compari-
on should be with the efficiency per process of a sequence
f three periodic NPCs, each of length L /3, which is pro-
ortional to

�1

3
·

2

�
�2

= 0.045.

or the homogeneous nonlinear photonic quasicrystal
hat we implement here, the lowest process efficiency is
roportional to �1�0.23�2=0.053 and the highest is pro-
ortional to �1�0.365�2=0.133, both better than the com-
osite periodic structure.

ig. 4. (Color online) Normalized pump wavelength response.
xperiment and simulation results of second-harmonic genera-

ion as a function of pump wavelength. This figure corresponds
ith panel (a) of Fig. 3.
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The ability to shape the spectrum using different rep-
esentations of the function g�r� can be very useful for
ascaded processes that, to some extent, are better per-
ormed in sequence. For example, in multiharmonic gen-
ration, where the outputs of some of the processes serve
s inputs for others, it might be beneficial to give prece-
ence to the efficiencies of the initial processes at the be-
inning of the NPC and gradually, along the interaction
ength, change the balance in favor of the latter processes.

. EXPERIMENTAL RESULTS
he NPC was fabricated by electric field poling [29] of
TiOPO4 and is shown in Fig. 2. The spatial modulation
as performed along 1 cm with a 2 mm�1 mm cross sec-

ion. To test the NPC, we used a pump beam from a tun-
ble external cavity diode laser, followed by an erbium-
oped fiber amplifier, and a fiber polarization controller
hose purpose is to polarize the beam to be perpendicular

o the plane of modulation of the NPC. The pump beam
as then chopped at a frequency of 1 kHz and focused to
waist of 20 �m in the middle of the crystal. Its power
as varied during the experiment in the range of
–40 mW. The NPC was kept at a constant temperature
f 100 °C. The input pump wavelength was varied in the
ange of 1528–1577 nm and the resulting second-
armonic power was measured using a calibrated silicon
hotodiode, followed by a lock-in amplifier. The results
ere compared with a simulation employing a split step
ourier method [30], in which a nondepleted Gaussian
eam was used as a pump. Both results exhibit excellent
greement, as can be seen in Fig. 4, and show that this
evice is indeed most efficient for second-harmonic gen-
ration of the three designated pump wavelengths.

Note that for focused Gaussian beams [31], the actual
eak efficiencies are shifted by 1 nm toward longer wave-
engths, as compared with the idealized design using
lane-wave interaction. However, with temperature tun-
ng, the results can be shifted in both directions. For the
avelength range used here, the shift rate is 0.1 nm/ °C.
he conversion efficiencies were also calculated theoreti-
ally using the Boyd–Kleinman formalism for focused
aussian beams, propagating within a homogeneous non-

inear crystal [31], modified to include the relevant Fou-
ier coefficient. The nonlinear conversion efficiencies for
he wavelengths for which conversion was maximal are
hown in Table 1. The small discrepancies between theory
nd simulation are attributed to the assumption, made in
he theoretical calculation, that each process is affected
nly by its relevant Fourier component. In the simulation,
he propagating waves experience small but still nonneg-
igible contributions from close-by spectral components.

Table 1. Conve

avelength
(nm)

Experimental Efficiency
1/W�

1531 1.19�10−3

1551 3.37�10−4

1571 3.18�10−4

aMaximum conversion efficiencies are obtained for the indicated wavelengths. In
. SUMMARY
e present what we believe to be the first experimental

ealization of a nonlinear optical device employing the
eneral solution of the phase-matching problem, given by
AB. The demonstrated device is a one-dimensional

hree-wave doubler. We show that by simply using 100%
r 0% duty cycles, each of the three-wave doubling pro-
esses exhibits high efficiency. Moreover, the efficiencies
re all higher than for a device employing a periodic
odulation with the same overall interaction length. We

emonstrate the ability to perform spectral shaping of the
esponse by changing the duty cycles associated with the
ifferent tiles. This allows us to strengthen certain pro-
esses at the expense of others. It should be stressed once
ore that the LAB solution is general and can support

ny set of nonlinear processes, not only for one-
imensional problems but also in two or three dimen-
ions, without any symmetry restrictions. In addition,
his general method can be applied to a broad range of
roblems from generation of radiation sources through
ll-optical processing to generation of entangled photons
n quantum optics applications.
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