
LJournal of Alloys and Compounds 342 (2002) 186–190
www.elsevier.com/ locate/ jallcom

T he square Fibonacci tiling
*Ron Lifshitz

School of Physics and Astronomy, Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978,Israel

Abstract

We introduce the 2-dimensional square Fibonacci tiling and its generalization to higher dimensions as models for quasicrystals without
‘forbidden’ symmetries. We derive some of the basic mathematical properties of the tiling as well as calculate its diffraction pattern. We
discuss the relevance of the Fibonacci tiling for quasicrystal research and for applications in other fields.
 2002 Elsevier Science B.V. All rights reserved.
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21 . Construction of the square Fibonacci tiling tiles: a small square of dimensions 13 1, denoted byS ; a
2large square of dimensionst 3t, denoted byL ; and a

Consider two identical Fibonacci grids, each consisting rectangle of dimensions 13t, denoted byR. The 1-d
of an infinite set of lines whose inter-line spacings follow sequence contains only two of the three possible types of
the well-known Fibonacci sequence of short (S) and long ‘vertices’ connecting pairs of tiles:LL and LS (or its
(L) distances mirrored versionSL). The SS vertex never appears in the

1-d Fibonacci sequence. Consequently, in the square
. . . LSLLSLSLLSLSLLSLLSLSLLSLS . . . (1) Fibonacci tiling there are only three allowed vertex con-

figurations (to within rotations) as shown in Fig. 2(a). The
Superimpose the two grids at a 908 angle, as shown in Fig.
1, and you get a 2-dimensional quasiperiodic tiling with
tetragonal point group symmetry 4mm. This widely over-
looked tiling, which we call the ‘square Fibonacci tiling’,
is the subject of this paper. We shall describe its basic
mathematical properties in Section 2, calculate its diffrac-
tion diagram in Section 3 and discuss its relevance to
quasicrystal research in Section 4.

2 . Properties of the square Fibonacci tiling

The mathematical properties of the square Fibonacci
tiling are directly related, by way of its construction, to the
well-known properties of the 1-dimensional Fibonacci
sequence [1]. Consider first some of the trivial properties.
The 1-d sequence consists of two ‘tiles’ or segments,S and
L, whose lengths are proportional to 1 and the ‘golden

]Œmean’ t 5 (11 5) /2.1.618, respectively. Consequent-
ly, the square Fibonacci tiling consists of three different
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Fig. 2. (a) Atlas of allowed vertex configurations; (b) Minimal covering
cluster.

1-d Fibonacci sequence has a ‘minimal covering cluster’ Fig. 3. Substitution rules for the square Fibonacci tiling.
containing only three tiles,LSL. This means that one can
cover the whole sequence by overlapping copies of this
single cluster, or equivalently, that any tile in the sequence 1 1 1
belongs to such a cluster. As a consequence, the squareM 5 1 0 0 . (2)S D

2 0 1Fibonacci tiling has a minimal covering cluster of nine
tiles, shown in Fig. 2(b). 2 22The eigenvalues ofM arel 5t , l 5t andl 5 2 1.1 2 3Next, consider the various methods for generating the

The eigenvector of the largest eigenvaluel is propor-1tiling. In addition to superimposing two Fibonacci grids, as
tional towe did in the initial construction of the tiling, one can

directly generate the square Fibonacci tiling using any 2
t

method that can be used to generate the 1-d Fibonacciv 5 . (3)11 S Dsequence. It can be generated by the cut-and-project 2t
method from 4-dimensional space; it can also be generated

2 2 2using the dual multi-grid method; both in an obvious Thus, there aret times as manyL tiles as there areS
2generalization of the procedure used to generate the 1-d tiles, and there are 2t times as manyR tiles as there areS

2Fibonacci sequence. More interesting is to generate the tiles. Dividing the components ofv by their sumt 1 111
4 2 22tiling using substitution, or inflation, rules. The substitution 2t 5t , one gets the tile frequencies:P(L )5t ,

2 24 23rules for each of the tiles in the square Fibonacci tiling, P(S )5t and P(R)52t . It is left as an exercise for
shown in Fig. 3, follow immediately from the substitution the reader to show that one can obtain the same result by
rules for the 1-d sequence:S → L, L → LS. using the knowledge that in the 1-d Fibonacci sequence

Using the substitution rules for the tiling one can easily there aret times as manyL’s as there areS’s.
2calculate the tile frequencies, namely, what fractionP(L ) Finally, note that the square Fibonacci tiling also has

2of the tiles are large squares, what fractionP(S ) are small unique composition rules, meaning that the substitution
squares, and what fractionP(R) are rectangles. This is rules of Fig. 3 can uniquely be iterated backwards, as
done, as usual, by examining the components of the shown by thick lines in Fig. 4. Thus, the vertices of the
eigenvector, corresponding to the largest eigenvalue of the square Fibonacci tiling contain as a subset another square
substitution matrix [1]. The substitution matrix, consider- Fibonacci tiling whose tiles are scaled by a factor oft (tile

2ing the horizontal and vertical rectangular tiles as the same areas are scaled by a factor ofl 5t ). The square1

tile, is simply Fibonacci tiling inherits itst-scaling or inflation symmetry
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(1)
r (x)5Od(x 2^ib(n)), (7)

n

the Fourier transform

(1) ikx (1) ik^ ib(n)
r̂ (k)5E dx e r (x)5O e (8)

n

can be calculated analytically via the cut-and-project
description [1,2] to give

'sinK h ,h1 2(1) 2ˆ ]]]r (k)5O t d(k 2 (h [ta*] 1 h [a*])). (9)' 1 2Kh ,h h ,h1 2 1 2

The diffraction diagram of the Fibonacci sequence contains
Bragg peaks whose positions are located on a reciprocal
lattice of rank 2, generated by all integral linear combina-
tions of the two wave vectorsa* 52p /(t 12) and ta*.
The amplitude of each peak depends on the so-called
‘perpendicular wave vector’

2
t' ]K 5 (h [ta*] 2 h [a*]). (10)h ,h 2 11 2 2Fig. 4. Demonstration of thet scaling symmetry of the square Fibonacci

tiling.
The key to calculating the Fourier transform of the square
Fibonacci tiling (or any of itsd-dimensional generaliza-

directly from the 1-d Fibonacci sequences from which it is tions) is the fact that thex andy coordinates of the vertex
constructed. positionsr are independent of each other. The calcula-(n,m)

tion in 2 or higher dimensions decomposes into indepen-
dent 1-dimensional calculations. If one takes a set of

3 . Diffraction pattern point-like scatterers on the vertices of the 2-d square
Fibonacci tiling

Now, associate an ‘atom’ in the form of ad-function
(2)

r (x,y)5Od(x 2^ib(n))d(y 2^ib(m)), (11)scatterer with each vertex of the square Fibonacci tiling,
n,mand calculate the Fourier transform. As a first step note that

one can label all the vertices of the tiling by a pair of then the Fourier transform is simply
successive integers (n,m), starting arbitrarily from a vertex

(2) i(k x1k y) (2)labeled (0,0) and counting the number of tilesn crossed in x yr̂ (k ,k )5EEdx dy e r (x,y)x y
the x-direction and the number of tilesm crossed in the

ik ^ ib(n) ik ^ ib(m)y-direction. The positionr of the vertex (n,m) can be x y(n,m) 5 O e O eS DS D
n mspecified analytically by recalling that the position of the

th
(1) (1)n vertexx of the 1-d Fibonacci sequence is given by then ˆ ˆ5 r (k )r (k ). (12)x y

function

The two coordinates separate, giving a 2-d Fourier trans-n n
] ]UU UU UU UUx 5^ib(n)5 t 1Sn 2 D, (4)n form which is the product of two 1-d Fourier transforms oft t

the form (9). Ind-dimensions one similarly gets
where izi is the largest integer# z. It then follows that

(d ) (1) (1)ˆ ˆ ˆr (k , . . .k )5 r (k ) ? ? ? r (k ). (13)1 d 1 dˆ ˆr 5^ib(n)x 1^ib(m)y, (5)(n,m)

The Fourier transform of the square Fibonacci tiling is
ˆ ˆwherex and y are unit vectors in thex- and y-directions. shown in Fig. 5, where amplitudes are proportional to

This can easily be generalized to an arbitrary number of circle radii. Note that the resulting diffraction diagram is of
dimensionsd, where the position of the vertex (n , . . .n )1 d ˆ ˆrank 4. It is generated by the 4 wave vectorsa*x, ta*x,
of the d-dimensional Fibonacci tiling is given by ˆ ˆa* y andta* y. The peak intensities associated with these 4

vectors are comparable, indicating that the structure isnotˆ ˆr 5^ib(n )x 1 . . . 1^ib(n )x . (6)(n , . . . n ) 1 1 d d1 d an incommensurately modulated crystal. The Fourier trans-
Recall also that for a 1-dimensional density ofd-function form also confirms the 4mm point-group symmetry as well
scatterers, arranged according to the Fibonacci sequence as thet-scaling symmetry of the tiling.
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tetrahedral [9], tetragonal [10], and possibly also hexagon-
al [11] quasicrystals. One of the cubic quasicrystals [8], a
Mg–Al alloy, is even reported to have inflation symmetry

]Œinvolving irrational factors related to 3. The structure of
this alloy might have some features in common with the
cubic Fibonacci tiling.

Even if there are no real quasicrystals exhibiting the
structure of the square Fibonacci tiling, it still does not
imply that the tiling is experimentally irrelevant. In recent
years, we have come to know a number of experimental
applications where one creates artificial quasicrystals. One
example is in the field of photonic crystals [12], with the
aim of producing novel photonic band-gap materials.
Another example is in the field of non-linear optics [13],
with the aim of achieving third- and fourth-harmonic
generation in a single crystal. In both of these examples, it
would be beneficial to make artificial quasicrystals with the
structure of the square Fibonacci tiling.

Finally, I would like to promote the square Fibonacci
tiling and its cubic version as useful theoretical tools. They
can be used to explore novel quasiperiodic order such as

Fig. 5. Fourier transform of the square Fibonacci tiling. The amplitude at magnetic order [14] and color symmetry [15]. More
each point is proportional to the radius of the circle. importantly, they can be used to calculate physical prop-

erties of quasicrystals such as electronic, photonic, and
4 . Discussion: Is the square Fibonacci tiling good for phononic structure and transport, as well as phason and
anything? defect dynamics. In all cases, on a model much simpler

than the standard 2-d and 3-d tiling models of quasicryst-
I would like to use the last section to argue that the als, where, as in the example of the calculation of the

square Fibonacci tiling, as well as its 3-dimensional cubic Fourier transform (12), it is expected that the coordinates
version, are both relevant and potentially useful for will easily separate.
research in the field of quasicrystals. If this is so, the
reader might wonder why these tilings have been ignored
up until now. I imagine that the reason is that according to
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