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Symmetry Breaking and Order in the Age of Quasicrystals
Ron Lifshitz*[a]

To Danny Shechtman, for enriching our lives so profoundly.

1. Introduction

The year 2012 marks the centennial of the discovery of
the diffraction of X-rays by crystals. This discovery was a
great triumph not only for the idea that matter is com-
posed of atoms, but also for the underlying paradigm of
modern crystallography, stating that all structurally or-
dered matter is composed of periodic arrangements of
these atoms. Since its early days, modern crystallography
treated order and periodicity synonymously, both serving
equally to define the notion of a crystal. With that came
the so-called “crystallographic restriction,” stating that
crystals cannot have certain forbidden symmetries, such
as 5-fold rotations. The periodicity of crystals became the
underlying paradigm not only for crystallography itself,
but also more generally for materials science and solid-
state physics or chemistry, whose most basic tools relied
on periodicity.

The year 2012 also marks the 30th anniversary of the
discovery of quasicrystals, which completely shattered
this paradigm, leading to a rebirth of crystallography.[1]

Cahn[2] described the discovery of quasicrystals as a Kuh-
nian scientific revolution,[3] and I believe that we are now
in the midst of the most exciting stage of this revolution.
The old established paradigms, most importantly that of
the periodicity of crystals, have been overthrown. The ini-
tial skepticism of the scientific community—embodied
most vividly in the writings of Pauling[4]—is now gone, re-
placed by full recognition with the award of the 2011
Nobel Prize in Chemistry to Shechtman, which we are
celebrating with this festive issue of the Israel Journal of
Chemistry. New notions and paradigms are being tested
and carefully adopted. New theories of quasicrystals,

aperiodic tilings, and symmetry are being developed. Ex-
perimental techniques are undergoing fundamental modi-
fications to encompass aperiodic crystals. All this intense
activity is being pursued by hundreds of scientists world-
wide, ranging from pure mathematicians and crystallogra-
phers to physicists, chemists, materials scientists, and even
a few architects.

I would like to share some of the exciting surprises en-
countered in the current paradigm-building phase we are
in, by reviewing the successful adaptation of a number of
fundamental notions—related to symmetry breaking and
order—to the age of quasicrystals. Order, or more specifi-
cally long-range order, is a well-established notion, used
extensively in theories of phase transitions. The emer-
gence of order is associated with a spontaneous breaking
of symmetry, where the less-ordered phase is character-
ized by a higher degree of symmetry than the ordered
one. In fact, it is the change in symmetry that distin-
guishes between the two phases. In the case of crystals we
are talking about the positional order of the atoms. The
isotropic pairwise interactions between atoms give rise to
a free energy that is isotropic and translationally invari-
ant—one can shift or rotate space by any amount and the
free energy remains unchanged. The disordered liquid
phase has all these symmetries of the free energy, but the
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ordered crystal phase breaks this symmetry—it is no
longer invariant under arbitrary translations or rotations.

What may seem surprising at first sight is the fact that
a physical state—that of the ordered phase—has less sym-
metry than the physical interactions that give rise to it.
This seems to contradict the general belief—articulated
by Curie[5] in his famous symmetry principle—that “when
effects show a certain asymmetry, this asymmetry must be
found in the causes which give rise to them.” Neverthe-
less, the idea is not new, and dates at least as far back as
Euler�s description of the buckling of a compressed elas-
tic beam. Today, spontaneous symmetry breaking serves
as one of the most basic notions of condensed-matter
physics,[6] as well as being the underlying basis for the ex-
planation of the so-called Higgs mechanism in particle
physics.[7]

The general framework for treating the emergence of
long-range order was formulated by Landau in his theory
of phase transitions.[8] As described very clearly by
Sethna,[9] it consists of providing answers to a number of
basic questions: (1) What is the appropriate order parame-
ter with which one can measure the degree of order? Such
a quantity should be zero in the disordered phase and
nonzero in the ordered phase. (2) What is the broken sym-
metry? To answer this, one often uses the language of
group theory, characterizing the symmetry of the free
energy, or the disordered phase, by a group G ; the sym-
metry of the order parameter, or of the ordered phase, by
a subgroup H ; and then, if H is a normal subgroup, asso-
ciating all the broken symmetries that are in G but not in
H with the quotient group G/H. Applying the broken-
symmetry operations to the physical state in the ordered
phase changes it into a different, yet energetically equiva-
lent state, since these operations do not change the free
energy. Thus, the quotient group G/H is very useful in
mapping out all the degenerate minimum free-energy
states that make up the so-called “order-parameter
space”. (3) What are the elementary excitations? These
are low-energy excitations, taking the free energy just
above its minimum value. They are the so-called Gold-

stone modes that are directly related to the broken sym-
metry and to the nature of the order-parameter space. (4)
What are the topological defects? These are imperfections
in the otherwise perfectly ordered state, also directly re-
lated to the nature of the order-parameter space.

In what follows we shall answer these questions in the
context of the liquid-to-crystal phase transition, where it
is the breaking of translational symmetry that plays the
important role,[9] keeping in mind that we are now living
in the age of quasicrystals. The discussion will take us
through a redefinition of the term crystal (Section 2); a
reassessment of what we actually mean when we say that
a crystal has a certain symmetry (Section 3); the introduc-
tion of a new type of elementary excitation, the phason
(Section 4); and a generalization of the notion of a dislo-
cation (Section 5), where one can no longer speak of the
simple termination of one plane in a sequence of periodi-
cally ordered planes of atoms.

2. What is the Order Parameter for a Crystal?

We wish to find an appropriate order parameter for crys-
tals, in light of the fact that we now know that ordered
matter need not be periodic. To do so we must first un-
derstand what we mean when we say that atoms are or-
dered in space. Roughly speaking, the crystalline order
parameter should be able to measure the extent of our
ability to describe the positions of atoms in far-away re-
gions of space, based on our knowledge of their positions
nearby. More technically, it should be a measure of the
correlations between the positions of atoms in distant re-
gions of the material. If 1 rð Þ is a function that measures
the deviation of the density in a certain material from its
average value, then the function that measures correla-
tions between two points separated in space by a vector
R—the two-point autocorrelation function—is known in
crystallography as the Patterson function,[10]

P Rð Þ ¼ lim
V!1

1
V

Z

V

1 r�Rð Þ1 rð Þdr: ð1Þ

Luckily, this expression is directly related to the inten-
sity, measured in diffraction experiments, where X-rays,
electrons, neutrons, or any other quantum probes are
elastically scattered by the material. The measured inten-
sity, I kð Þ ¼ 1 kð Þj j2, is simply the Fourier transform of
Equation (1), where 1 kð Þ is the Fourier coefficient of the
density 1 rð Þ at wave vector k. This can provide some
physical intuition regarding the notion of long-range posi-
tional order, beyond that which is obtained through pe-
riodicity. It also gives us a particularly useful tool for
characterizing ordered matter.

When scattered waves reach the detector—a photo-
graphic plate or a CCD camera—at a given position, they
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interfere with each other. If the atoms are arranged ran-
domly in space, the relative phases of the detected waves
will be random, and the waves will interfere destructively,
producing not more than a very weak signal everywhere.
On the other hand, if the atoms are ordered, arranged in
correlated positions, one could imagine that at special
and precise points on the detector they could interfere
constructively, giving rise to intense peaks. If the intensity
of these peaks scales as the number N of atomic scatter-
ers, we can conclude that the positions of all the N atoms
must be carefully arranged and correlated such that all N
waves arrive at the detector with the same phase. This is
the defining property of the familiar “Bragg peaks”, from
which one extracts the information needed for crystal-
structure determination. In the thermodynamic limit
(N !1) these peaks will diverge like Dirac delta func-
tions.

Indeed, it was realized long ago[11] that a very conven-
ient order parameter that signals a transition from a dis-
ordered liquid to an ordered solid—indicating the emer-
gence of non-trivial correlations—appears in the form of
delta functions, or Bragg peaks, at non-zero wave vectors
in the diffraction diagram. We shall use this order param-
eter. In the case of a periodic crystal these wave vectors
form a periodic lattice, reciprocal to the lattice of transla-
tions in real space, leaving the crystal invariant. It was a
great surprise, three decades ago, to realize that the con-
dition of constructive interference from all the atoms can
be fulfilled even when the atoms are not arranged period-
ically, as in the Penrose tiling[12] of Figure 1. This was ob-
served, of course, in Shechtman�s experiment,[13] as well
as in the theoretical work of Mackay[14] and later also of
Levine and Steinhardt,[15] Elser,[16] and others. Elser even
showed very early on that a particular kind of disorder,
associated with the phason degrees of freedom, discussed
below, does not destroy the Bragg peaks, even though it
adds diffuse scattering.

There is an issue of semantics to consider before
moving on. Before the age of quasicrystals, both perio-
dicity and order were used to define the term crystal.
After the discovery, one had to decide on a new defini-
tion. Although there is still a bit of inconsistency in the
literature, the scientific community tends to associate the
term crystal with having long-range order. Thus, one
speaks of periodic crystals and of aperiodic crystals. The
first official step in this direction was made by the Inter-
national Union of Crystallography, through its Commis-
sion on Aperiodic Crystals,[17] which in its report for the
year 1991 introduced an empirical definition of the term
crystal that abolishes periodicity, and shifts the focus
from a microscopic description of the actual crystal to its
measured diffraction diagram. Realizing that Bragg peaks
are observed in all known crystals, the Commission stated
that a crystal is “any solid having an essentially discrete
diffraction diagram.” More recent discussions[18,19] have
made the definition more explicit by stating that “a crys-

tal is a solid that has long-range positional order,” and
then considering what it means to have such order. The
reader may want to refer to ref. [19] for a discussion on
the consequences of associating order with spatial corre-
lations. It turns out that the real-space characterization of
sets of points that produce Bragg peak diffraction has
proven to be quite elusive, yielding many surprising and
unintuitive results along the way. It is still a very active
field of research.[20]

3. What is the Broken Symmetry?

3.1. Symmetry of the Disordered Phase: A Liquid

Since we are considering the transition from a liquid to
an ordered solid, the symmetry of the disordered phase,
and therefore presumably of the free energy as well, is
given by the Euclidean group. This is the group of all
rigid translations and rotations of space.1 But, we empha-
size once again that we shall focus on the broken transla-

Figure 1. A small section of the rhombic Penrose tiling,[12] contain-
ing two kinds of rhombic tiles, with a small angle of 36 degrees
and of 72 degrees. These two types of tiles are arranged in a very
specific and ordered manner to produce a tiling that is quasiperi-
odic. If we were to place atoms at, say, the vertices of the tiling
and perform a diffraction experiment, we would see a 10-fold sym-
metric Bragg peak diffraction diagram, as was originally done by
Mackay.[14]

1 By rotations we mean both proper and improper rotations—
mirror reflections and the inversion of space—making up the full
d-dimensional orthogonal group OðdÞ. Naturally, we are mainly
concerned with d =2 or 3.
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tional symmetry,[9] while considering the breaking of rota-
tional symmetry as a direct consequence of the former.

The basic idea, at least for continuous phase transitions,
is that, at the transition, the deviations 1 rð Þ of the density
from its average value are very small. This justifies ex-
panding the free energy F in powers of 1 rð Þ and its deriv-
atives, as long as all terms in the expansion are invariant
under the Euclidean group. Thus, for example, the term
r1 is not allowed, while ðr1Þ2 and r21 are fine. As the
free energy contains entropic contributions, some of its
expansion coefficients are expected to depend on temper-
ature. Above Tc, in the liquid phase, the minimum value
of the free energy is zero, and is obtained for 1 rð Þ ¼ 0 ev-
erywhere. As one cools down the material, and crosses
below Tc, the coefficients of the different terms in the
free energy vary, allowing the free energy of a state with
a non-zero and non-uniform 1 rð Þ to become negative,
thus effecting a symmetry-breaking transition.

3.2. Symmetry of the Ordered Phase: A Quasiperiodic Crystal

3.2.1. What is a Quasiperiodic Crystal?

We said that the ordered solid is characterized by having
Bragg peaks in its experimental diffraction diagram, or
equivalently in its calculated Fourier spectrum. We now
wish to be more specific and limit ourselves to a particu-
lar subcategory of structures satisfying this requirement,
namely to quasiperiodic crystals. For specific terminology
we follow H. Bohr�s theory of almost periodic func-
tions,[21] and say that an almost periodic crystal is a solid
whose density function 1 rð Þ may be expressed as a super-
position of a countable number of plane waves

1 rð Þ ¼
X
k2L

1 kð Þeik�r: ð2Þ

In particular, if taking integral linear combinations of a
finite number D of wave vectors in this expansion can
span all the rest, then the crystal is quasiperiodic. Owing
to its finite resolution, an experimental diffraction pattern
of a real quasiperiodic crystal will exhibit Bragg peaks
only on a finite subset of L, each of which can be indexed
by D integers. If D is the smallest number of wave vectors
that can span the whole set L using integral linear combi-
nations, then D is called the rank, or the indexing dimen-
sion of the crystal. Periodic crystals form a special subset
of all quasiperiodic crystals, whose rank D is equal to the
physical dimension d (the number of components in the
vectors r and k). The term quasicrystal, first introduced

by Levine and Steinhardt,[15] is short for quasiperiodic
crystal, but is commonly used to refer to those quasiperi-
odic crystals that are strictly aperiodic, with D> d.2

3.2.2. The Notion of indistinguishability

We limit our discussion to ordered phases that are quasi-
periodic, and continue by following Mermin�s line of ar-
gument.[24] Thus, we consider crystals whose expansion is
given by Equation (2) with a finite rank D. These contain
periodic crystals (D =d) and quasicrystals (D >d) as two
distinct subsets. By substituting the sum of density waves
(2) into an expansion of the free energy in powers of 1 rð Þ
and its derivatives, we obtain an alternative expression
for the free energy in Fourier space,

F ¼
X

n

X
k1 ;...;kn2L

A k1; . . . ; knð Þ1 k1ð Þ � . . . �1 knð Þ, ð3Þ

where the wave-vector dependence of the coefficients
Aðk1; . . . ; knÞ originates from the derivative terms in the
original expansion. These coefficients must vanish, unless
k1 þ . . .þ kn ¼ 0, as an immediate consequence of the in-
variance of F with respect to an arbitrary translation. This
can be seen by the fact that a translation by a vector u in
real space multiplies each product of Fourier coefficient
in Equation (3) by a phase exp(i[k1 +…+kn] · u, which
must be equal to unity for the free energy to remain un-
changed. An important consequence of this form of
Equation (3), for a generic F, is that if 1ðrÞ is a minimum
of F, then the set L of wave vectors for which 1ðkÞ6¼0 is
closed under addition, unless Bragg peaks are extinguish-
ed due to symmetry. Mermin[24] showed that a generic
free energy will be linearly unstable if 1ðkÞ ¼ 0 at a wave
vector k that is a linear combination of wave vectors al-
ready in L, allowing the appearance of a nonzero Bragg
peak at k to lower the energy. In this sense, the set L ex-
tends the nature of the reciprocal lattices of periodic crys-
tals to quasiperiodic crystals. We therefore continue call-
ing L a lattice of wave vectors also in the general case of
quasiperiodic crystals. The lattice L has the algebraic
structure of a finitely generated Z-module, and is some-
times called the Fourier module. A Z-module is like a
vector space, only that the scalars are taken from a ring—
the integers—rather than a field.

We note in passing that, in the immediate years follow-
ing the discovery of quasicrystals, expansions like Equa-
tion (3), truncated at n =3 or 4, were used to calculate
the free energies of different structures in an attempt to
explain the stability of quasicrystals. Kalugin, Kitaev, and
Levitov [KKL],[25] who extended the famous work of
Alexander and McTague[26] explaining why most crystals
are bcc (body-centered cubic), even showed that the ico-
sahedral quasicrystal can have a lower free energy than
the competing bcc phase. But then, Gronlund and

2 Some authors require crystals to possess so-called “forbidden
symmetries” in order to be regarded as quasicrystals. It is now un-
derstood that such a requirement is inappropriate. See ref. [22] for
details, and ref. [23] for simple examples of square and cubic qua-
sicrystals.
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Mermin[27] showed that the addition of a quartic term to
the cubic free energy of KKL reverses the outcome of
the calculation, establishing the bcc phase as the favored
one. This approach is now being revisited in light of the
discovery of quasicrystals in soft matter (for a review see
ref. [28]), where truncated expansions of the free energy
might be more valid. It has already yielded an explana-
tion for the thermodynamic stability of a certain class of
2-dimensional soft-matter quasicrystals with dodecagonal
symmetry.[29]

Here, rather than calculating the free energies of par-
ticular structures, we wish to make use of the free energy
expansion (3) to find a general characterization of the
order-parameter space. We start by asking what is the re-
lation between two degenerate minimum states of a ge-
neric free energy.3 In other words, we wish to find the
conditions under which two different symmetry-broken
states are indistinguishable, as far as the free energy (3) is
concerned. It follows directly from the form of Equation
(3) that if two such states—characterized by two different
density functions, 1 rð Þ and 10 rð Þ—are both minima of F,
their Fourier coefficients must satisfy the equalities

8k1; . . . ; kn 2 L : 10 k1ð Þ � . . . � 10 knð Þ ¼ 1 k1ð Þ � . . . � 1 knð Þ,
ð4Þ

for any n, whenever k1 þ . . .þ kn ¼ 0. These products are
the so-called structure invariants that are used as the basis
for solving the phase problem in crystallography. They
are nothing but the Fourier-space version of the state-
ment that the density autocorrelation functions, of arbi-
trary order n,

CðnÞ r1; . . . ; rnð Þ ¼ lim
V!1

1
V

Z

V

1 r1 � rð Þ . . . 1 rn � rð Þdr, ð5Þ

all give the same values for both states. We used two-
point correlations in Equation (1) to indicate the exis-
tence of long-range order. Now we see that for two states
to have the same order—both being minima of the same
generic free energy—they must agree on all their n-point
correlations for arbitrary n. Following Rokhsar, Wright,
and Mermin,[30] we say that two such states are indistin-
guishable. The term homometric is used in crystallography
to describe two distinct crystals that share the same 2-
point correlations, thus producing the same diffraction di-
agram, yet differ in their higher-order spatial correlations.

The conditions for indistinguishability, stated either by
Equation (5) in real space or by Equation (4) in Fourier
space, seem quite impractical, as they require one to com-

pare infinitely many correlations. Fortunately, the state-
ment of indistinguishability in Fourier space can be great-
ly simplified,[29–31] at least in generic situations, as follows.
First we note that the densities in real space are real and
therefore the Fourier coefficients satisfy 1 �kð Þ ¼ 1� kð Þ.
For 2-point correlations, Equation (4) is then a statement
of the identity of the magnitudes of the Fourier coeffi-
cients of indistinguishable densities, or equivalently of the
fact that two indistinguishable densities must produce
identical diffraction diagrams. One can therefore associ-
ate a (real) phase c kð Þ with each Bragg peak k, such that

8k 2 L : 10 kð Þ ¼ e2pic kð Þ1 kð Þ: ð6Þ

Rokhsar, Wright, and Mermin[29,30] called c kð Þ a gauge
function, in analogy to the gauge functions in electrody-
namics, which can change the phase of a wave function
without changing any of its observables. From the fact
that the densities are real, together with Equation (6), it
immediately follows that c �kð Þ ¼ �c kð Þ. This, together
with the indistinguishability condition (4) for the equality
of 3-point correlations, leads to the requirement that c be
a linear function of the wave vectors in L,

8k1; k2 2 L : c k1 þ k2ð Þ ¼ c k1ð Þ þ c k2ð Þ: ð7Þ

The surprising consequence of this last requirement is
that for generic quasiperiodic densities it automatically
ensures the equality of all higher-order correlations. To
see this, simply substitute Equation (6) into Equation (4),
and make use of the linearity property (7). Thus, we need
only check the equality of the 2-point and 3-point correla-
tions in order to determine whether two quasiperiodic
densities are indistinguishable, rather than having to ex-
amine infinitely many correlations as in Equations (4)
and (5).4 The bookkeeping for this is particularly simple
in Fourier space: Two quasiperiodic densities are both
minima of the same generic free energy, termed indistin-
guishable, if and only if their Fourier coefficients are relat-
ed by a linear gauge function c kð Þ as in Equation (6). We
should emphasize that this statement, which was recently
proven in a more general setting,[33] is true only for gener-
ic quasiperiodic densities. For example, Gr�nbaum and
Moore[34] constructed non-generic examples of distinct
structures that agree on all their n-point correlations up
to n=5, but disagree on their 6-point correlations.

It turns out that there is an even deeper surprise
hidden behind the italicized statement above, which is re-
vealed by considering the space of all possible gauge
functions cðkÞ. Because the set of all gauge functions can
be used, through Equation (6), to map a particular mini-

3 By “generic” we mean roughly that the free energy will not have
accidental degeneracies or other peculiar features that could be
undone by small variations of its parameters.

4 Had we not subtracted the average density in the definition of
1ðrÞ, the condition (4) for n =1 would have required us to verify,
in addition, that the two densities have the same average.

1160 www.ijc.wiley-vch.de � 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Isr. J. Chem. 2011, 51, 1156 – 1167

Review R. Lifshitz

http://www.ijc.wiley-vch.de


mum free-energy state exactly onto all others, the space
of all gauge functions is isomorphic to the space of all
minimum free-energy states. Furthermore, because gauge
functions are linear, one can uniquely express cðkÞ by
specifying its values ci ¼ cðbðiÞÞ on a chosen basis for L,
consisting of D linearly independent wave vectors (over
the integers), bðiÞ with i ¼ 1; . . . ;D. Any set of D real
numbers ci specifies a unique gauge function, and any
gauge function is uniquely expressed as a set of D num-
bers (once a particular basis has been chosen). Thus the
space of all gauge functions is a D-dimensional vector
space V* over the real numbers.[35] Now, here comes the
surprise: We have just shown that the symmetry of the
free energy is given by gauge functions cðkÞ, which are
equivalent in an abstract sense to vectors ðc1; . . . ; cDÞ in a
D-dimensional space. Yet, the symmetry of the liquid
phase consists of the set of all d-dimensional rigid transla-
tions u= ðu1; . . . ; udÞ, where in general D � d. Thus, the
free energy, in general, when restricted to quasiperiodic
functions, has more symmetry than we had initially pre-
sumed. We are still considering a symmetry-breaking
phase transition, yet before we break the symmetry, we
must step back and realize that the actual symmetry of
the free energy consists not only of rigid translations of
space. Rigid translations form only part of what one can
achieve with gauge functions, using Equation (6). This sit-
uation is possible because we have restricted the defini-
tion of gauge functions to a countable set L of wave vec-
tors k at which 1ðkÞ6¼0. For D> d, even though this set is
dense, one cannot extend the gauge functions to functions
that are linear for all continuous values of k.

One can decompose any given gauge function into a
pure d-dimensional rigid translation, given by the d com-
ponents of a translation vector u, and, if D> d, a remain-
ing contribution �ðkÞ, called a phason, that affects only
the relative phases of the Fourier coefficients, leaving
some chosen origin fixed. This decomposition is achieved
through a change of basis in the space V* of gauge func-
tions,

c kð Þ ¼
X

nici ¼
u � k
2p
þ f kð Þ, where k ¼

X
nib

ðiÞ: ð8Þ

For periodic crystals[31] f(k) =0, and the translation
vector is simply given by u ¼

P
cja
ðjÞ, where the vectors

aðjÞ are the usual real-space dual vectors, satisfying
aðjÞ � bðiÞ ¼ 2pdij. We demonstrate the decomposition of a
gauge function into a translation and a phason below, for
an operation that leaves the ordered state invariant.

3.2.3. What Remains of the Broken Translational Symmetry?

The key to understanding what remains of the full sym-
metry of the free energy, when that symmetry is broken,
is the fact that the gauge function appears as a multiplica-
tive phase in Equation (6). Thus, transforming a density 1

with a gauge function c, as in Equation (6), leaves it in-
variant if and only if c is integral-valued on all the wave
vectors (the factor of 2p having been conveniently taken
out by the definition). If the crystal is periodic, then all
the possible integral-valued gauge functions correspond,
through the relation in Equation (8), exactly to the set of
translations leaving the crystal invariant. In that case, the
full symmetry group G, which is the set of all rigid trans-
lations of d-dimensional space, is broken into a discrete
and periodic lattice of translations. For quasicrystals, the
effect of transforming 1 with an integral-valued gauge
function c is more elaborate, combining translations with
phasons. The latter appear in the form of nontrivial spa-
tially correlated rearrangements of tiles (in tiling models)
or of the atoms (in real crystals). Such a symmetry opera-
tion is demonstrated in Figure 2, using the Penrose tiling.

3.2.4. What is the Order-Parameter Space?

Let us follow Dr�ger and Mermin[35] and slightly formal-
ize the observations of the previous subsections. Gauge
functions are useful in describing the relations between
the different symmetry-broken minimum free-energy
states. Gauge functions form a vector space V* of all real-
valued linear functions on the lattice L, and because L
has rank D, V* is a D-dimensional vector space over the
real numbers. The space V* encodes the full symmetry of
the free energy F. The space V* contains, as a subspace,
all the integral-valued linear functions on L. We denote
this subset—which has the algebraic structure of a rank-D
Z-module, just like L itself—by L*. Gauge functions in
L* leave the minimum free-energy state invariant, thus
encoding the symmetry that remains in the ordered
phase. Gauge functions that belong to the quotient space
V*/L* transform the ordered state described by 1 into a
different, yet indistinguishable, ordered state described by
some other density function 10. Thus, V*/L*—the space of
all linear functions on L with real values modulo the inte-
gers—is the order-parameter space. One can parameter-
ize all the degenerate ordered states by a set of D num-
bers 0 � ci < 1, i=1,…,D. Geometrically, this can be
viewed as a simple D-torus, or equivalently as a D-dimen-
sional unit cube with periodic boundary conditions. Arith-
metic, involving gauge functions, is performed from here
on modulo the integers, to remain within the order-pa-
rameter space V*/L*. We denote equality to within an ad-
ditive integer by the symbol ���.

3.2.5. What Remains of the Broken Rotational Symmetry?

We are now in a position to describe the rotational sym-
metry of the ordered phase. But first, we should ask our-
selves what we mean when we say that a crystal has a cer-
tain rotational symmetry. After all, we have redefined the
notion of a crystal. Is it possible to avoid a redefinition of
the notion of symmetry?
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In the case of a periodic crystal we mean that the rota-
tion leaves the density of the crystal invariant to within a
translation. This means that after rotating we may need

to apply a translation, after which the points of the rotat-
ed crystal will exactly coincide with the points of the orig-
inal crystal. The densities of quasicrystals, however, in
general possess no such symmetries. In fact, it is a nice
exercise to show that if a 2-dimensional crystal contains
more than a single point, about which an n-fold rotation
(n >2) brings it into perfect coincidence with itself, the
crystal is necessarily periodic. So a crystal with, say, 5-fold
symmetry cannot contain more than a single point of
“exact” 5-fold symmetry, and if we were given a finite
piece of that crystal there is a good chance that we would
never find that point. We can therefore no longer rely on
the criterion of invariance to within a translation as a def-
inition of crystal symmetry.

Our discussion above, on the order-parameter space,
holds the key to resolving this problem, and thereby
adapting the notion of symmetry to the age of quasicrys-
tals. For periodic crystals, the property of invariance to
within a translation simply means that the rotation maps
a particular ordered state into one of the other states in
the order-parameter space. This can be generalized to any
quasiperiodic crystal by saying that a symmetry operation
leaves the crystal indistinguishable rather than invariant to
within a translation. Thus, a symmetry operation need not
leave the density 1ðrÞ invariant, but rather all of its auto-
correlations, as expressed in Equations (4) or (5), must be
left invariant.

Indeed, certain rotations, when applied to a quasiperi-
odic crystal, take it into one that looks very much like the
original unrotated crystal, similar to what we saw in
Figure 2 after applying an integral-valued gauge function.
This is demonstrated in Figure 3, where a blue Penrose
tiling is placed over an identical red one, and is then ro-
tated. Nothing interesting happens until a 10-fold (36
degree) rotation is completed and a fair fraction of the
vertices of the two tilings coincide (top figure). The blue
tiling is then translated by some amount until whole re-
gions, of about 10 to 20 tiles across, coincide (middle
figure). Finally, the blue tiling is translated even further
until regions of the order of the whole observed patch co-
incide. Between the coinciding regions there always
remain strips, containing tiles that do not match, as we
saw earlier in Figure 2. If we could see the entire infinite
tiling we would observe that any bounded region in the
rotated tiling can be found in the unrotated tiling, but the
larger the region the further away one has to look in
order to find it. Even so, there is no translation that will
bring the whole infinite blue tiling into full coincidence
with the infinite red one, as the Penrose tiling contains
not even a single point of “exact” 10-fold symmetry. One
will always need to add a phason component, rearranging
the tiles in a correlated manner throughout the whole
tiling, in order to obtain full coincidence.

The collection of all rotations and reflections g 2 OðdÞ
that are symmetries of a given crystal form the point
group of the crystal. To fully specify the symmetry of the

Figure 2. The Penrose tiling of Figure 1 in red, covered by an
exact copy of itself in blue shifted by a small amount (top), and
shifted by a larger amount (bottom). Red tile edges are visible in
regions of mismatch. An increase in the coincidence of vertices
and tiles is clearly visible the greater the translation. Viewing the
images of superimposed tilings with a slight defocusing enhances
the appearance of highly correlated lines containing all the mis-
matched tiles, which must be rearranged to obtain the original
tiling. These rearrangements are effected by the phason compo-
nents of the integral-valued gauge function.
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crystal—given by its space group—we need to indicate
exactly in what way the original and rotated versions of
the crystal differ. If the crystal is periodic, where indistin-
guishability reduces to invariance to within a translation,
all we need is to specify exactly what translation tg needs
to follow each rotation to leave the crystal invariant. If
the crystal is quasiperiodic, simple translations, in general,
are insufficient and the required information is encoded
in a special gauge function, �g kð Þ, known as a phase func-
tion,[29, 30] relating 1 grð Þ and 1 rð Þ through their Fourier co-
efficients,

8k 2 L : 1 gkð Þ ¼ e2pi�g kð Þ1 kð Þ: ð9Þ

This so-called point-group condition (9) is used to
decide whether a rotation g is in the point group G of the
crystal. It also imposes immediate constraints between
the phase functions associated with two point-group oper-
ations g and h and their product gh, known as the group-
compatibility conditions,

8g; h 2 G : �gh kð Þ � �g hkð Þ þ �h kð Þ: ð10Þ

The possible solutions to these coupled equations (10)
are used to find all distinct sets of phase functions for a
given point group, using various equivalence criteria. This
provides a very simple and elegant approach for calculat-
ing, and then listing, all the possible space group
types.[31,32] This approach has been generalized for dealing
with magnetic symmetry[36] and color symmetry[37] in qua-
sicrystals, and also for treating modulated crystals and
composite structures.5[39] For an introduction see ref. [40].
We should remind the reader that the idea of describing
the symmetry of crystals in Fourier space was suggested
long ago by Bienenstock and Ewald,[41] but its usefulness
became clear only after the discovery of quasicrystals. We
also note that expressions like the group-compatibility

Figure 3. The Penrose tiling of Figure 1 in red, covered by an
exact copy of itself in blue rotated by 36 degrees (top); then shift-
ed by a small amount (middle) ; and finally shifted by a larger
amount (bottom). Red tile edges are visible in regions of mismatch.
As in Figure 2, the coincidence of vertices and tiles is clearly in-
creased, the greater the translation one applies following the 10-
fold rotation. Even so, there is no translation that will bring the
whole infinite red tiling into full coincidence with the infinite blue
one, since the Penrose tiling contains not even a single point of
“exact” 10-fold symmetry. The gauge functions relating the red and
blue tiles in each frame differ from each other by an integer-
valued gauge function from L*. Orange dots mark the original
point of rotation on the two tilings.

5 These quasiperiodic crystals were known before the discovery of
quasicrystals, but did not pose any threat to the periodicity para-
digm, as they are formed by slightly modifying an underlying peri-
odic crystal. Their crystallography was treated by de Wolff, Janner,
and Janssen[38] by embedding them in spaces of D dimensions,
where periodicity is recovered.
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conditions (10) are known from cohomology theory,
where they are called co-cycles, thus making another sur-
prising connection between crystals, diffraction theory,
and abstract mathematics.[42]

Finally, the point-group condition (9) allows one direct-
ly to predict the existence of extinctions in the diffraction
diagram of a crystal.[43] These are wave vectors in the lat-
tice L that are expected to carry Bragg peaks, owing to
the closure of L under addition. Nevertheless, they are
extinguished due to symmetry. Indeed, if a wave vector k
is invariant under an operation g (gk =k), then according
to Equation (9) 1ðkÞ must vanish unless �g kð Þ � 0. This is
essentially the whole argument, except for the fact that
one can show that for a given space group type, the value
of �g kð Þ at such wave vectors k that are invariant under g,
is independent of the specific ordered state that is chosen
within the order-parameter space.

4. What are the Elementary Excitations?

We shall not give here a complete account of the elemen-
tary excitations in quasiperiodic crystals, since many dis-
cussions and reviews can be found elsewhere.[44–46] We
only wish to describe how they emerge naturally in our
discussion of symmetry breaking.[9] As a direct conse-
quence of the breaking of continuous symmetry, known
as the Goldstone theorem, one can introduce long-wave-
length deformations of the ordered state that cost very
little energy. In the infinite-wavelength limit these defor-
mations gradually reduce to a pure gauge transformation,
having no energy cost at all. In the case of periodic crys-
tals, these Goldstone modes are the well-known phonon
modes, or sound-wave excitations. At any given wave
vector q, there will be d phonon modes, because there are
d distinct polarizations, or d components in the transla-
tion vector u. More generally, in a quasiperiodic crystal,
we expect to have D polarizations at any wave vector q,
coming from the richer possibilities afforded by the gauge
functions. As in Equation (8), an appropriate basis can
always be chosen that reflects the fact the first d modes
are the usual phonon modes, arising from the pure trans-
lational components of the gauge function, while the re-
maining D�d modes are called phason modes.

We have just seen that gauge functions cðkÞ transform
one ordered state into another at no energy cost. After
choosing a basis, the gauge functions are specified by a
set of D numbers ðc1; . . . ; cDÞ. To introduce a deformation
in the otherwise perfectly ordered state, we allow the
gauge function to vary slowly in space. Thus, locally at
each point we have one particular ordered state, but as
we move from one region in the crystal to another, we
gradually explore the order-parameter space. To formal-
ize this we introduce the order-parameter field (not to be
confused with the order parameter discussed in Section
2), consisting of D components ciðrÞ. If the order-parame-

ter field is constant in space it reduces to a simple gauge
function and no energy is required. If it varies slowly in
space, say as exp(iq · r) , there will be an energy cost
coming from the gradients, whose leading contribution is
proportional to rciðrÞj j2� qj j2, continuously approaching
zero at the infinite wave-length (or zero wave-vector)
limit.

It is common, although not always necessary, to de-
scribe the order-parameter field in the phonon-phason
basis, as in Equation (8). In that case, the phonon distor-
tion is expressed using the usual d-dimensional displace-
ment field u(r), describing the small deviations of the
density from its equilibrium position at r. In many simple
situations it just so happens that D =2d. For icosahedral
crystals in 3 dimensions the rank is 6, and in 5-, 8-, 10-,
and 12-fold crystals in 2 dimensions the rank is 4. In these
cases the number of phason components is also equal to
the physical dimension, and one often describes the
phason distortion using a second d-dimensional field w(r).
The full D-component order-parameter field, can then be
expressed as

c r ; kð Þ ¼
X

nici rð Þ ¼ 1
2p

u rð Þ � kþ 1
2p

w rð Þ � ~k, ð11Þ

where ~k is a d-dimensional vector, obtained from the
original vector k by a linear transformation that permutes
its coefficients ni, so that the dot product with the phason
field w(r) induces a relative phason distortion, rather
than a simple displacement. For example, for 5-fold and
10-fold quasicrystals in 2-dimensions, if k is given by the
four integers ðn1; n2; n3; n4Þ, in the standard basis of four
wave vectors bðiÞseparated by 72 degrees, then ~k is given
by ðn2; n4; n1; n3Þ in the same basis.[46] It should be noted
that the phonon–phason basis, in general, does not diago-
nalize the free energy, in the sense that even in the har-
monic approximation there is a coupling between the two
fields.

Much like phonons, phasons are low-energy excitations
of the quasicrystal, affecting its hydrodynamic description
and elastic properties, only that instead of encoding the
fluctuations of atoms away from their equilibrium posi-
tions, they encode relative changes in the positions of
atoms, called phason flips. In Figures 2 and 3 we saw long
strips of correlated phason flips. In a real quasicrystal,
thermal fluctuations may induce uncorrelated phason
flips, and upon lowering the temperature there often re-
mains frozen-in disorder in the form of uncorrelated
phason flips. This leads to a particular broadening of the
Bragg peaks and the addition of diffuse scattering.
Indeed, these effects of the phason excitations are detect-
ed regularly in experiments,[45] including even the direct
observation of individual phason flips using high-resolu-
tion TEM,[47] or by studying large-scale metamaterials
such as photonic quasicrystals.[48] Nevertheless, phasons
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are a continuing source of interesting and surprising puz-
zles, and ongoing debate.[46]

5. What are the Topological Defects?

As in the previous section, we shall not give here a full
account of the topological defects in quasiperiodic crys-
tals,[49] and again only show how they enter into the
framework of the liquid-to-crystal symmetry-breaking
transition. Equipped with our convenient parameteriza-
tion of the order-parameter space as a D-torus, we can
proceed to understanding and classifying the different
topological defects, or dislocations, that can form in the
otherwise perfectly ordered state. Again, we use the same
D-component order-parameter field, ciðrÞ, and gradually
explore the order-parameter space as a function of posi-
tion, but this time going in a loop around the core of the
dislocation rather than going in a straight line as before.
To do so, it is convenient to express the position vector r
in polar coordinates ðr; qÞ and use a gauge function that
depends only on the angle coordinate ciðqÞ.

The topological nature of the defect[50] is related to the
fact that it cannot be made to disappear by local structur-
al changes. For this to be the case, as we traverse in a
loop around the position of the dislocation, say the
origin, we follow a curve in the order-parameter space
that winds around the ith direction of the D-torus ni times,
and returns back to the original point in order-parameter
space. This yields a crystal that is everywhere only-slightly
distorted from the ordered state, except near the core of
the dislocation. It is accomplished by taking ciðqÞ ¼ ni q.
Thus, the most general dislocation is characterized by a
set of D integers ðn1; . . . ; nDÞ, which, for a periodic crystal,
reduces to the familiar d-dimensional Burgers vector. Not
surprisingly, the set of all dislocations forms a rank-D Z-
module—the so-called homotopy group of the D-torus.[50]

A pair of dislocations—introduced in this manner into
the dodecagonal and square ordered state of a certain
free energy, introduced by Lifshitz and Petrich[51]—are
shown in Figure 4 after a short relaxation time.

Once we understand how the order-parameter field
ciðrÞ encodes the information about the possible existence
of dislocations, we can readily extract this information for
any given structure. Figure 4 demonstrates how one can
actually do this. The procedure shown may be carried out
in “real-time”, while simulating the dynamics of a quasi-
crystal, so that dislocation motion can be followed quanti-
tatively as the system evolves. Barak and Lifshitz[52] used
this technique to study such questions as the climb veloci-
ty of dislocations under strain, the pinning of dislocations
by the underlying quasiperiodic structure under condi-
tions of weak diffusion, and the relaxation of phason
strain as two dislocations of opposite topological sign,
like the ones in Figure 4, merge and annihilate each
other. They did so by using particular dynamics, based on

a simple relaxation of the Lifshitz and Petrich[51] free
energy. Freedman et al.[48] used a similar procedure to an-
alyze experimental images of dislocations in photonic
quasicrystals.

6. Summary and outlook

I have presented an overview of quasicrystals, within the
framework of a symmetry-breaking phase transition,
which may not yet be complete, but where much is now
known and well understood. I avoided the use of D-di-
mensional spaces, where D >d vectors can be made mu-
tually orthogonal, thus allowing one to rely on all the
known concepts of periodic crystals, yet in an abstract

Figure 4. Top left (in both images): Snapshot of the numerical so-
lution of the Lifshitz–Petrich equation[51] showing a dodecagonal
and a square pattern, a short time after a pair of dislocations had
been injected at two separate positions, with Burgers vectors
(1,0,0,0), (�1,0,0,0), and (1,0), (�1,0), respectively. Bottom left : Four-
ier transform of the pattern. Note the fuzzy Fourier coefficients,
containing the information about the angle-dependent local
gauge transformation. Bottom right: A pair of fuzzy Bragg peaks,
filtered out of the full Fourier image. Top right: Inverse Fourier
transform of the filtered peaks revealing the dislocation pairs.
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high-dimensional space.[38] Instead, I followed an ap-
proach, formulated in d-dimensional physical space—
originally introduced by Rokhsar, Wright, and
Mermin,[30]—insisting on forming a new understanding of
old fundamental notions, and adapting them to the age of
quasicrystals. I have shown that Bragg peaks and their as-
sociated gauge functions are all that is required to address
the four questions, introduced at the outset. The gauge
functions are used to describe the broken symmetry in
quasiperiodic crystals, to characterize the order-parameter
space, and to construct an order-parameter field for
studying defects and excitations. They contain all the nec-
essary information, in their D components (once a partic-
ular basis is chosen), and offer an attractive alternative to
the need for embedding the crystal itself in a D-dimen-
sional space.

Although much progress has been achieved so far in
the study of quasicrystals, it is clear that there is still even
more to be done. I therefore believe that there are many
years of exciting research still ahead before crystallogra-
phy becomes, once again, a mature science awaiting its
next revolution.
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