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1. Introduction

Inspired by the growing numbers and varieties of quasiperiodic crystals, the
International Union of Crystallography has redefined the term crystal to mean “any
solid having an essentially discrete diffraction diagram”, thereby shifting the es-
sential attribute of crystallinity from position space to Fourier space.1 Within the
family of crystals one distinguishes between periodic crystals, which are periodic
on the atomic scale, and aperiodic crystals which are not. This broader definition
reflects our current understanding that microscopic periodicity is a sufficient but
not a necessary condition for crystallinity.

The purpose of this lecture is to describe the corresponding shift to Fourier
space in the crystallographic classification scheme, proposed over thirty years ago
by Bienenstock and Ewald2 and established as a practical scheme for periodic
and quasiperiodic crystals by Rokhsar, Wright, and Mermin.3 I will emphasize
that Fourier-space crystallography, which avoids an unnecessary detour into high-
dimensional ‘superspaces’, is strongly based on 3-dimensional geometry, clarifies
the concept of point group for aperiodic crystals, and provides a unified treatment
for all types of crystals: periodic crystals, incommensurately modulated crystals,
composite crystals, quasicrystals, and modulated quasicrystals.

2. The Bravais Class – A class of (reciprocal) lattices

Each Bragg peak in the discrete diffraction pattern determines a wave vector
k at which the density has a nonvanishing coefficient in its Fourier expansion,

ρ(r) =
∑
k∈L

ρ(k)eik·r . (1)

The (reciprocal) lattice L – sometimes called the Fourier module – is defined as
the set of all integral linear combinations of the wave vectors determined by the
observed Bragg peaks. As so defined, L includes wave vectors at which the co-
efficients ρ(k) are too weak to be detected. As the resolution is improved more
peaks may appear at larger wave vectors and in the quasiperiodic case between

1 Acta Cryst. A48 (1992), 928.
2 Acta Cryst. 15, (1962) 1253-1261.
3 With later contributions also by Rabson, Dräger, and myself. A detailed list

of references is given in the review by Mermin, Rev. Mod. Phys. 64, (1992) 3-49,
and more recent references are given at the end of these notes.
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already existing peaks. This is because quasiperiodic lattices are ‘dense’ in the
mathematical sense – there is no requirement of minimal distance between wave
vectors. The lattice L may also include wave vectors at which ρ(k) is required to
vanish by the symmetry of the crystal. Such points are called extinctions and will
be discussed later. It has been shown by Mermin4 that there is no other generic
reason for wave vectors in L to be missing from the diffraction pattern.

We normally restrict ourselves to lattices which can be generated by an inte-
gral linear combination of a finite number of wave vectors. The minimum number
D of vectors needed to generate L is called the rank or indexing dimension of L.
A crystal is periodic if and only if the rank of its lattice is equal to the physical
dimension d. Only then is the lattice a conventional ‘reciprocal lattice’ related in
the familiar way to a lattice of real-space translations under which the periodic
crystal is invariant. We shall always use the term ‘lattice’ referring to the lattice
of wave vectors and not to the ‘direct lattice’ of real-space translations.

The point group of the lattice – its holohedry – is the set of proper and im-
proper rotations applied about the origin of Fourier space which leave it invariant.
It is a finite subgroup of O(3) which necessarily contains the inversion. Two lat-
tices are in the same Bravais class if one can interpolate between them with a
sequence of lattices, all with the same point group and rank.

Quasiperiodic crystals fall under three categories based on their Bragg peak
intensities. The term quasicrystal is used for quasiperiodic crystals in which no
clear distinctions can be made between the Bragg peaks based on their intensity
(other than the trivial decay in intensity of high-indexed peaks). The diffrac-
tion patterns of incommensurately modulated crystals contain a single sublattice
of strong reflections caused by an average (periodic or quasiperiodic) structure and
a set of weak reflections caused by the modulations. Finally, composite crystals are
composed of two (or more) interpenetrating subsystems producing two (or more)
sublattices of strong reflections and a set of satellites which are due to the mutual
interaction of the subsystems.

3. Indistinguishability and the concept of Point Group Symmetry

The point group of a periodic crystal is traditionally defined as the subgroup
of the lattice point group which leaves the density itself invariant to within a
translation. The densities of aperiodic crystals, however, in general possess no such
symmetries. A careful examination shows that any region in a rotated aperiodic
crystal can be found in the unrotated crystal, but the larger the region the further
away you have to look in order to find it. The two crystals contain the same
statistical distribution of substructures on all scales.

Exercise 1. Show that if a two-dimensional crystal does contain more
than a single point, about which an n-fold rotation brings it into perfect
coincidence with itself, then the crystal is necessarily periodic.

4 Proceedings of the XIX International Colloquium on Group Theoretical Meth-
ods in Physics, Salamanca, Spain, 1992. Vol. II, pp. 302-317.
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Two densities that are statistically the same though not necessarily identical
are called indistinguishable, and the point group of a crystal is redefined as the
set of rotations that take the density into an indistinguishable one. The precise
mathematical condition for densities ρ and ρ′ to be indistinguishable is that they
have the same positionally averaged n-point autocorrelation functions for all n –

1

V

∫
drρ(r1 − r) . . . ρ(rn − r) =

1

V

∫
drρ′(r1 − r) . . . ρ′(rn − r) . (2)

This condition acquires a very simple form in Fourier space – the Fourier coeffi-
cients of two indistinguishable densities ρ and ρ′ must be related by

ρ′(k) = e2πiχ(k)ρ(k) , (3)

where χ(k), called a gauge function, is linear modulo an integer over the lattice
of wave vectors (i.e. χ(k1 + k2) ≡ χ(k1) + χ(k2) whenever k1 and k2 are in the
lattice, where “≡” indicates equality modulo an integer).

Exercise 2. Show that the Fourier transform (1) of condition (2) leads
to an equivalent condition that the product of the density Fourier coef-
ficients ρ(k) over any set of wave vectors summing to zero should agree
with the corresponding product for ρ′(k). Show that the identity of the
two- and three-point correlation functions is enough to guarantee the
identity of all higher-order correlation functions by proving that the two
indistinguishable densities are related by a gauge function as in (3).

In the periodic case one can show that 2πχ(k) is necessarily of the form
k · d for some constant vector d independent of k, so that ρ′(r) = ρ(r + d) and
indistinguishability reduces back to identity to within a translation. One can then
combine point group operations with translations to recover the traditional space
groups of periodic crystals, containing operations that leave the density identical
to what it was. In the aperiodic case one must retain the general form of χ(k)
which is defined only on the lattice and cannot be extended to arbitrary k.

Because the point group is defined to leave the density indistinguishable, we
can associate with each point group operation g a gauge function Φg(k), called a
phase function, which relates ρ(gk) and ρ(k):

ρ(gk) = e2πiΦg(k)ρ(k) . (4)

Exercise 3. To illustrate the use of phase functions, consider a 2-dimen-
sional density constructed as a sum of five plane waves separated by an-
gles of 2π

5 : ρ(r) =
∑5
n=1 sin(kn ·r+φ), where kn =

(
cos(n 2π

5 ), sin(n 2π
5 )
)
.

Show that the density is 10-fold symmetric whenever φ is an odd-integer
multiple of π/10. (Hint: Express the density in the form of Eq. (1), use
the relation −1 = eiπ, and require that the phase function be linear.)
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Finally, since ρ([gh]k) = ρ(g[hk]), it follows from (4) that the set of phase
functions associated with the elements of a point group G must satisfy the group
compatibility condition:

∀g, h ∈ G : Φgh(k) ≡ Φg(hk) + Φh(k). (5)

These constraints on the phase functions are the generalizations to quasiperiodic
crystals of the Frobenius congruences in the traditional space group description of
periodic crystals.

Exercise 4. Prove Eq. (5) and show, for example, that if g and h com-
mute their phase functions must satisfy Φg([h− 1]k) ≡ Φh([g − 1]k).

4. The Space Group – A class of phase functions

Having defined the point group and the phase functions, the space-group
classification of crystals is merely an organization of sets of phase functions into
equivalence classes according to two criteria:

1. Gauge Equivalence. Two sets of phase functions, Φ and Φ′, that describe
indistinguishable densities ρ and ρ′, related by a gauge function χ, should clearly
be associated with the same space group. It follows from (3) and (4) that two such
sets must be related by

Φ′g(k) ≡ Φg(k) + χ([g − 1]k) (6)

for every g in the point group and every k in the lattice. We call phase functions
describing indistinguishable densities gauge-equivalent and equation (6), convert-
ing Φ into Φ′, a gauge transformation.

2. Scale Equivalence. Two sets of phase functions, Φ and Φ′, should also
be counted as equivalent if there is a symmetry s of the lattice L, which is an
automorphism of the point group G = sGs−1, taking one set into the other

Φ′g(k) = Φsgs−1(sk) . (7)

Exercise 5. Operations s that are in the point group G have precisely
this property, but show directly from (5) that for such s, Φ′ and Φ are
already gauge-equivalent.

If s is not an element of the point group, then the two sets of phase functions
will not in general be gauge-equivalent. In the periodic case s can be an element
of O(3) (for example a 90 degree rotation when G is a tetrahedral point group on
a cubic lattice), or an element of O(3) combined with a rescaling of the primitive
lattice-generating vectors (for example 90 degree rotations of an orthorhombic lat-
tice). Here the distinct gauge-equivalence classes making up a single space group
are the different settings of that space group. In the quasiperiodic case s can be an
isotropic rescaling of the entire lattice (as in icosahedral quasicrystals), an isotropic
rescaling of a sublattice (as in axial quasicrystals), or even independent rescalings
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of individual lattice-generating vectors. Because rescalings are often (though not
always) a part of the transformation s, two classes of gauge-equivalent phase func-
tions that are further identified in this manner are called scale-equivalent.

The classes of phase functions under gauge equivalence and scale equivalence
correspond precisely to the space groups in the periodic case, and constitute the
extension of the space group classification scheme to the general aperiodic case.

5. Gauge Invariant Phases – Screw axes, Glide planes, and Extinctions

It follows from Eq. (6) that if gk = k then Φg(k) is invariant under arbitrary
gauge transformations. These gauge-invariant phases are directly related to the
phenomenon of extinctions, for it follows directly from the definition (4) of the
phase function that whenever gk = k, the Fourier coefficient ρ(k) vanishes unless
Φg(k) also vanishes (modulo an integer). Thus the phase functions of a given
space group immediately determine the extinctions.

Extinctions have a somewhat different character when viewed from the per-
spective of Fourier space. Traditional crystallography starts with a direct lattice
of translations, dual to this lattice is a lattice of wave vectors, and associated with
each wave vector is a Bragg peak. Certain Bragg peaks may be missing from the
diffraction pattern as a consequence of special symmetry elements of the space
group – screw axes and glide planes. In Fourier-space crystallography one begins
with the diffraction pattern and extends it by taking all integral linear combi-
nations of observed wave vectors to form the lattice. Every lattice vector is a
candidate for an additional Bragg peak unless it is prohibited by the space group,
as discussed above. The emphasis thus shifts from extinctions as missing Bragg
peaks to extinctions as peaks that can never be added to the diffraction pattern
no matter how much the resolution is improved.

Exercise 6. (A) Use the group compatibility condition (5) to show that
a phase function associated with a mirror m can only assume the values
0 and 1/2 in the invariant plane of the mirror. (Use the relation m2 = e,
where the identity e has by definition Φe ≡ 0).
(B) Show that a phase function associated with an n-fold rotation r can
only assume the values j/n on the axis of rotation.

We call the plane of a mirror m a glide plane if Φm(k) 6≡ 0 for any lattice
vector in the plane. We call the axis of a rotation r a screw axis if Φr(k) 6≡ 0
for any lattice vector on the axis. These definitions eliminate the need to asso-
ciate extinctions with the interplay between rotations and translations which is
peculiar to the periodic case. Moreover, the results obtained in Exercises 6 and 7,
though geometrically trivial in the periodic case, are valid for aperiodic crystals
of arbitrary (not necessarily finite) rank.

Exercise 7. If an axis of n-fold rotation r lies in the plane of a mirror m
then the product rm is also a mirror. Show that Φr(k) can only assume
the values 0 and 1/2 on the axis of rotation. This establishes that screw
axes of odd order cannot exist in mirror planes.
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6. Enumeration – Basic Ideas and Selected Examples

1. Bravais Classes.
Enumerating all Bravais classes of lattices of a given point group and rank can

be a highly non-trivial task. Consider for example the case of 2-dimensional N -fold
symmetric lattices whose rank is the smallest compatible with their point group
(N is necessarily even because in two dimensions the inversion is equivalent to the
2-fold rotation and all lattices have inversion symmetry). The simplest lattices are
given by all integral linear combinations of N unit vectors separated in angle by
2π/N and are called standard lattices. A mapping of the enumeration problem to
the mathematical theory of cyclotomic integers (all integral linear combinations
of the N -th roots of unity) reveals a surprising result. All 2-dimensional N -fold
symmetric lattices (of lowest rank) are equivalent to the standard lattices for all
N from 4 to 44 and for N = 48, 50, 54, 60, 66, 70, 84, and 90. For all other N
there are also non-standard lattices and the number of Bravais classes into which
they are classified can be enormous (for example 359,057 for N = 128). Though
real crystals are not known to exist with axes of symmetry of such high order, one
should not take lightly the statement that all 12-fold lattices of rank 4 belong to
one Bravais class.

Consider next the cubic, tetrahedral, and icosahedral lattices of rank 6. It
has been shown that all rank-6 cubic lattices are decomposable into two mutually
incommensurate rank-3 (periodic) cubic lattices, i.e. they contain all integral linear
combinations of vectors from the two lattices and nothing else. As such they are
classified into six Bravais classes denoted as the sum of two rank-3 Bravais classes:
P + P , I∗ + I∗, F ∗ + F ∗, P + F ∗, P + I∗, and I∗ + F ∗ (the star is a reminder
that these are all in Fourier space). There are three Bravais classes of rank-6
tetrahedral lattices which cannot be decomposed in such a way since we know
that there are no tetrahedral lattices of rank 3. Lattices in these three Bravais
classes are most simply described as integral linear combinations of the six vectors
(1,±α, 0), (0, 1,±α), and (±α, 0, 1) with primitive, face-centered (the sum of all
integers even) and body-centered (all integers of the same parity) indexing. When
the irrational number α is equal to the golden mean these become the three Bravais
classes of rank-6 icosahedral crystals.

Finally, consider the hexagonal and trigonal lattices of arbitrary (but finite)
rank. It has been shown that all such lattices are fully decomposable into only
three types of periodic building blocks: rank-1 sublattices along the axis of 3- or 6-
fold symmetry, rank-2 triangular sublattices in the plane perpendicular to the axis
of rotation, and – only in the trigonal case – rank-3 rhombohedral sublattices. To
enumerate all hexagonal and trigonal Bravais classes of rank-n we simply consider
all possible decompositions of n and all possible mutual orientations of the various
sublattices.

In all the examples above one clearly sees the power of being able to resort
to 3-dimensional geometric intuition. Arriving at some of these results using the
superspace approach would require knowledge of traditional crystallography in
arbitrarily high dimensions.
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2. Gauge Equivalence Classes.
When the lattice of wave vectors has finite rank the procedure for determining

the possible phase functions is straightforward because they need be specified only
by their values at the lattice-generating vectors (due to their linearity), and only
for a set of elements g sufficient to generate the point group G (due to the group
compatibility condition). These values are constrained by applying the group
compatibility condition to the point group generating relations. By making a
judicious choice of gauge one can simplify the calculation from the start by setting
many of the unknown phases to zero, extracting a unique representative for each
class of gauge-equivalent phase functions.

Exercise 8. Show that for centrosymmetric point groups there exists a
gauge in which the phase function Φi(k), associated with the inversion,
is zero everywhere. Show that in this gauge all the density Fourier coeffi-
cients ρ(k) are real and therefore all other phase functions are restricted
to the values 0 or 1/2.

When the lattice is decomposable into a sum of sublattices of lower-rank,
each independently invariant under the lattice point group, it is not even neces-
sary to recompute the possible gauge-equivalence classes. All one needs to do is
to consider all the different combinations of the gauge-equivalence classes already
classified for the lower-rank sublattices. This is possible because the group com-
patibility condition (5) acts independently in each invariant sublattice and the
choice of gauge is independent in each invariant sublattice. Using this principle,
one for example, immediately deduces the gauge-equivalence classes for rank-6
cubic crystals or hexagonal and trigonal lattices of arbitrary finite rank from the
well-known gauge-equivalence classes in the periodic case.

3. Scale Equivalence Classes.
The remaining part of the space group classification is merely a matter of sim-

plifying the bookkeeping by grouping together different gauge-equivalence classes
which are scale-equivalent. Although the grounds for this further identification
are stated quite precisely, whether one chooses to make it or not can be a matter
of convention. In non-centrosymmetric point groups, for example, the inversion
is a symmetry of the lattice which can be used to relate gauge-inequivalent phase
functions. In the periodic case, one normally chooses not to make this identifica-
tion (because the inversion is not sense preserving), counting enantiomorphic pairs
of gauge-equivalence classes as distinct space groups.

When dealing with incommensurately modulated crystals or composite crys-
tals one may wish to constrain the rescaling operations s to those which leave
invariant the sublattice(s) of strong reflections. The finer categories that arise by
imposing such a constraint are merely settings of the more general categories –
the space groups. Different settings of a space group which are appropriate for
the description of incommensurately modulated crystals or composite crystals are
simply specified by identifying the sublattice(s) of strong reflections.
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