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It is argued that the prevailing definition of quasicrystals, requiring them to
contain an axis of symmetry that is forbidden in periodic crystals, is inadequate.
This definition is too restrictive in that it excludes an important and interesting
collection of structures that exhibit all the well-known properties of quasicrystals
without possessing any forbidden symmetries.
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1. INTRODUCTION

The aim of this paper is to argue against the common practice (1–4) to
restrict the definition of quasicrystals by requiring that they possess an axis
of symmetry that is incompatible with periodicity. According to this
restriction there are no quasicrystals in 1-dimension, and a quasicrystal in
2- or 3-dimensions must have an axis of N-fold symmetry, with N=5, or
N > 6. I propose here to accept the original definition of Levine and
Steinhardt (5) whereby the term quasicrystal is simply an abbreviation for
quasiperiodic crystal, possibly with the proviso that the term quasicrystal be
used for crystals that are strictly aperiodic (as the mathematical definition
of quasiperiodicity includes periodicity as a special case).

I shall start by reviewing some basic definitions in Sec. 2. I shall then
proceed in Sec. 3 to discuss the problematic distinction between the differ-
ent families of quasiperiodic crystals, namely, incommensurately modulated
crystals, incommensurate composite crystals, and those crystals that are



typically referred to as quasicrystals. Finally, in Sec. 4, I shall support my
call to relax the definition of quasicrystals by referring to theoretical
models, as well as experimental observations, of structures which should
be considered as quasicrystals even though they possess no forbidden
symmetries.

2. DEFINITIONS

2.1. What Is a Crystal?

Before Shechtman’s 1982 discovery of the first quasicrystal (6) it was
universally accepted, though never proven, that the internal order of crys-
tals was achieved through a periodic filling of space. Crystallography
treated order and periodicity synonymously, both serving equally to define
the notion of a crystal. With that came the so-called ‘‘crystallographic
restriction,’’ stating that crystals cannot have certain forbidden symmetries,
such as 5-fold rotations. The periodic nature of crystals was ‘‘confirmed’’
with the discovery of x-ray crystallography and numerous other experi-
mental techniques throughout the 20th century. Periodicity became the
underlying paradigm, not only for crystallography itself, but also for other
disciplines such as materials science and condensed matter physics, whose
most basic tools, like the Brillouin zone, rely on its existence.

Two decades later, it is now clear that periodicity and order are not
synonymous, and that a decision has to be made as to which should define
the term crystal. The International Union of Crystallography through its
Commission on Aperiodic Crystals (7) decided on the latter, but was not
ready to give precise microscopic descriptions of all the ways in which
order can be achieved. Clearly, periodicity is one way of achieving order,
quasiperiodicity as in Penrose-like tilings is another, but can we be certain
that there are no other ways that have not yet been discovered? The
Commission opted to shift the definition from a microscopic description of
the crystal to a property of the data collected in a diffraction experiment.
It decided on a temporary working-definition whereby a crystal is ‘‘any
solid having an essentially discrete diffraction diagram.’’ Crystals that are
periodic are explicitly called periodic crystals, all others are called aperiodic
crystals. The new definition is consistent with the notion of long-range
order, used in condensed matter physics, where the transition from a dis-
ordered liquid to an ordered solid is indicated by the appearance of an
order parameter in the form of Bragg peaks in the diffraction diagram at
non-zero wave vectors. It is sufficiently vague so as not to impose unneces-
sary constraints until a better understanding of crystallinity emerges. We
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need not worry about this vagueness here, because we shall only be con-
cerned with quasiperiodic crystals, which are a well defined subcategory of
structures, satisfying the new definition.

2.2. What Is a Quasiperiodic Crystal?

Solids whose density functions r(r) may be expanded as a superposi-
tion of a countable number of plane waves

r(r)= C
k ¥ L

r(k) e ik · r, (1)

are called almost periodic crystals. In particular, if taking integral linear
combinations of a finite number D of wave vectors in this expansion can
span all the rest, then the crystal is quasiperiodic. The diffraction pattern of
a quasiperiodic crystal, therefore, contains Bragg peaks each of which can
be indexed by D integers. If D is the smallest number of wave vectors that
can span the whole set L using integral linear combinations then D is called
the rank, or the indexing dimension of the crystals. Periodic crystals form a
special subset of all quasiperiodic crystals whose rank D is equal to the
actual physical dimension d. For periodic crystals the set of Bragg peaks is
truly discrete because the set of wave vectors k in their Fourier expansion
(1) is discrete. For quasiperiodic crystals whose rank D is greater than the
physical dimension d, the set L of wave vectors in the expansion (1) is
dense—there are k’s in L that cannot be surrounded by a finite d-dimen-
sional ball that contains no other k’s. Nevertheless, in actual experiments,
where the total integrated diffraction intensity is finite, Bragg peaks are not
observed at wave vectors k for which the intensity |r(k)|2 is below a certain
threshold. The observed diffraction pattern is therefore essentially discrete
even though the set L is not. It should be noted that all experimentally
observed crystals to date are quasiperiodic.

3. THE QUASICRYSTALLOGRAPHIC RESTRICTION

Certain classes of quasiperiodic crystals were known long before
Shechtman’s discovery. These are the so-called incommensurately-modulated
crystals and incommensurate composite crystals, (or intergrowth compounds).
The former consist of a basic (or average) ordered structure that is per-
turbed periodically (modulated) in space, and the period of the modulation
is incommensurate with the underlying spatial periodicities of the basic
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structure.2 The latter are composed of two or more interpenetrating sub-

2 We know today of cases where the basic structure itself is already aperiodic. (8,9)

systems with mutually incommensurate spatial periodicities. Each sub-
system, when viewed independently, is itself a crystal which is incommen-
surately-modulated due to its interaction with the other subsystems. The
diffraction diagrams of these special types of quasiperiodic crystals are
characterized by having one or more subsets of main reflections—Bragg
peaks that are significantly brighter than the others—describing the basic
structures, and weaker peaks, called satellites, arising from the modula-
tions. For more detail see, for example, Refs. 2 and 10.

Incommensurately-modulated and incommensurate composite crystals
did not pose any serious challenge to the periodicity paradigm because they
could all be viewed as periodic structures that had been slightly modified.
Order was still obtained through periodicity—the paradigm remained
intact. Shechtman’s discovery implied that there exist quasiperiodic crystals
for which a description in terms of a modulation of a basic periodic struc-
ture or a composition of two or more substructures is either inappropriate
or impossible. Due to its forbidden 5-fold symmetry, Shechtman’s qua-
sicrystal was clearly not a quasiperiodic modification of a periodic crystal,
but rather a crystal which was somehow intrinsically quasiperiodic—
a crystal in which order was not achieved by means of periodicity.
Shechtman’s discovery was able to shatter the old paradigm because it was
a clear violation of the crystallographic restriction. The observation of a
forbidden symmetry was so pivotal in the discovery of quasicrystals that
it became their defining property. The crystallographic restriction was
replaced by what may be viewed as a ‘‘quasicrystallographic restriction.’’

It is common practice to reserve the term ‘‘quasicrystal’’ exclusively
for those crystals, like Shechtman’s, that are intrinsically quasiperiodic,
setting them apart from modulated and composite crystals as a third sub-
category of quasiperiodic structures. This common point of view3 is

3 See, for example, Refs. 2, 10, 11, and 12.

appealing for many reasons, particularly, because there are systems whose
physical behavior is indeed governed by the fact that the crystal is modu-
lated or composed of substructures. Not viewing these systems as such, and
not utilizing the many theoretical and experimental tools developed speci-
fically for treating modulated and composite crystals, would be foolish.

The problem with the desire to distinguish between intrinsically-qua-
siperiodic crystals and crystals in which quasiperiodicity is obtained via
modulation or composition is the lack of a quantitative criterion for
making this distinction. The easiest way to see the difficulty is by consid-
ering the diffraction patterns. The diffraction pattern of a modulated
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crystal, for example, must exhibit a subset of strong main reflections
accompanied by weak satellites. This begs to ask how weak must the
satellites be to be considered as such? If one could hypothetically gradually
increase the intensity of the satellites and their harmonics, at what point
would the structure cease to be a modulated crystal? The same difficulty
can also be seen in direct space, by starting with a periodic crystal which
is modulated by a smooth incommensurate sine function, and gradually
increasing the amplitude of this modulation while adding higher harmonic
contributions. If consequently the modulation takes the shape of an
unsmooth sawtooth function would it not be more appropriate to view it as
a set of separate ‘‘atomic surfaces’’ like one does in a quasicrystal?

It turns out that this gradual transformation of a modulated crystal
into a ‘‘quasicrystal’’ is not at all hypothetical. There are examples of
systems, (13) in which this transformation happens as a function of compo-
sition. The transformed structures are described as modulated crystals, with
complicated modulation functions, called ‘‘Crenel functions,’’ (14) when in
fact they can be described very simply as ‘‘quasicrystals’’ with simple
atomic surfaces, as explained in Ref. 13.4 Although, one of the best sugges-

4 This may remind the reader of the famous experiment in which a group of people is shown a
sequence of pictures, beginning with a cat which gradually changes into a dog. The viewers
insist that they are still seeing a cat almost to the end, when in fact they are looking at a
picture of a dog.

tions (12) for the distinction between quasicrystals and modulated crystals is
based on the shape of the modulation function, it seems quite impractical
as a quantitative experimental criterion.

So, even though there are clearly structures that are formed by
modulating or composing simpler structures, and there are clearly other
structures that are not, there is simply no quantitative criterion to distin-
guish between these categories of quasiperiodic structures. Unless of
course, as a last resort, one adopts the quasicrystallographic restriction.
The criterion is then very simple: If a quasiperiodic crystal possesses for-
bidden symmetries then it is a quasicrystal, otherwise it is a modulated or a
composite crystal. This is probably the most appealing reason to adopt the
quasicrystallographic restriction. The problem is that it leaves no room for
the possible existence of crystals that are intrinsically quasiperiodic—not
formed by modulation or composition—yet possess no forbidden symme-
tries. If such crystals cannot exist then there is no problem with adopting
the quasicrystallographic restriction. If such crystals do exist then adopting
the restriction would be inappropriate. So we must ask: Are there any
examples of such crystals?
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4. MANY EXAMPLES

Theoretical models of such crystals, that are intrinsically quasiperiodic
yet possess no forbidden symmetries, are very easy to construct. In fact,
from a theoretical standpoint it should be obvious that there is nothing
special about point groups that are incompatible with periodicity. In
principle, any method that is used to generate a quasiperiodic tiling with,
say, 10-fold symmetry can be used to generate quasiperiodic tilings with,
say, 4-fold symmetry. Indeed, there are many examples in the literature of
tiling models of quasicrystals, with 2-, 4-, and 6-fold symmetry, generated
by all the standard methods: matching rules, (15) substitution rules, (15, 16) the
cut-and-project method, (17, 18) and the dual-grid method. (19)

I have recently described the two-dimensional square Fibonacci tiling
and its natural generalization into three (or even higher) dimensions. (20) It
is a quasiperiodic tiling with many of the features normally associated with
standard tiling models of quasicrystals like the Penrose tiling. It has a finite
number of tiles with definite tile frequencies and a finite number of vertex
configurations; it can be generated by most of the standard methods for
generating quasiperiodic tilings; its diffraction diagram contains Bragg
peaks with no clear subset of main-reflections; and most notably, it has
y-inflation symmetry, where y=(1+`5)/2 is the golden ratio. Like the
proverbial bird that looks like a duck, walks like a duck, quacks like a
duck, and is therefore a duck—the square Fibonacci tiling is a model
quasicrystal even though it has no forbidden symmetries.

To the best of my knowledge, no alloys or real quasicrystals exist with
the precise structure of the square or cubic Fibonacci tilings. Yet, this does
not imply that structures like the square Fibonacci tiling are experimentally
irrelevant. In recent years we have come to know a number of experimental
applications where one creates artificial quasicrystals. One example is in the
field of photonic crystals, (21) with the aim of producing novel photonic
band-gap materials. Another example is in field of non-linear optics, (22)

with the aim of achieving third- and fourth-harmonic generation in a single
crystal. In both of these examples it may be beneficial to make artificial
quasicrystals with structures, similar to that of the square Fibonacci tiling.

The existence of theoretical models and the possibility to fabricate
artificial structures might be dismissed as trivial, yet the existence of actual
experimental observations is a different matter. It turns out that there
have been experimental reports of quasiperiodic crystals with cubic sym-
metry (23, 24) as well as tetrahedral, (25, 26) tetragonal, (17) and possibly also
hexagonal (27) symmetry, that are neither modulated crystals nor composite
crystals. Their diffraction diagrams show no clear subset(s) of main reflec-
tions, yet they do not possess any forbidden symmetry. One of the cubic

1708 Lifshitz



quasicrystals, (24) a Mg-Al alloy, is even reported to have inflation symmetry
involving irrational factors related to `3. These crystals are clearly quasi-
periodic yet they are not formed by modifying an underlying periodic
structure. They are as intrinsically quasiperiodic as the quasicrystals that
have forbidden symmetries, and should therefore all be considered quasi-
crystals.

5. SO, WHAT IS A QUASICRYSTAL?

I suggest that the quasicrystallographic restriction, requiring quasi-
crystals to possess forbidden symmetries, be officially abandoned. I would
like the scientific community to accept the original definition of Levine and
Steinhardt (5) whereby the term quasicrystal is simply an abbreviation for
quasiperiodic crystal, possibly with the proviso that the term quasicrystal be
used only for crystals that are strictly aperiodic (since, as mentioned above,
the mathematical definition of quasiperiodicity includes periodicity as a
special case).

This paper is part of an ongoing debate on the meaning of crystallinity
and the concept of a quasicrystal. Some crystallographers might still be
under the impression that if a quasiperiodic crystal does not possess any
forbidden symmetry it must be either an incommensurately modulated
crystal or an incommensurate composite crystal, and that no other possi-
bility exists. Many crystallographers still impose the ‘‘quasicrystallographic
restriction’’ when defining quasicrystals in their publications. It is my firm
opinion that these practices and misconceptions should be stopped, not
only as a matter of academic preciseness, but more importantly, to make
sure that crystallographers who discover new quasicrystals without for-
bidden symmetries will not hesitate to publish their findings. As we cele-
brate in these Journal issues the many contributions of David Mermin to
science, its teaching, (28) and its communication to others, (29) a more appro-
priate title for this article (in the spirit of David Mermin’s ‘‘Reference
Frame’’ columns in Physics Today) might have been ‘‘What’s wrong with
these quasicrystals?’’ The answer in this case is that nothing is wrong with
these quasicrystals—the problem lies with the definition.
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