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Computational and theoretical methods, potential parameters, and additional figures supplement-
ing the discussion in the main text.

DETERMINATION OF POTENTIAL
PARAMETERS

The LP-Gaussian potential family is given in Fourier
space by (Eq. (1) in the main text)
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The potential is self-dual in the sense that it has the same
analytical form in real space (Eq. (2) in the main text),
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where J0 is the zeroth-order Bessel function and with
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Given the desired values of the wavenumber ratio kn, the
Gaussian width σ, and the depth of the pair potential
in reciprocal space Ũmin, we run a Mathematica script
to determine the coefficients {D2j}4j=0 by simultaneously
solving the following five equations:
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A substitution into the expressions for the coefficients
{C2i}4i=0 in Eq. (S3) and then into Eq. (S2) for the po-
tential in real space completes the calculation. The values
of σ are chosen so that the potentials are purely repul-
sive in real space, even though this is not required. All
of the potential parameters used in this study are listed
in Table S1.

COMPUTATIONAL METHODS

The main part of the simulations is performed with
the HOOMD molecular dynamics (MD) simulation pack-
age [1] with either N = 1024 particles or N = 16384
particles in the NV T ensemble at mean densities 0.1 ≤
c̄ ≤ 2.0. The interaction potential is cut off at r = 10,
shifted and smoothed close to the cut-off to avoid trunca-
tion errors and discontinuities. Due to the relatively high
density and the frequent particle overlap at our high den-
sities, up to 500-1000 neighbors can be contained within
the cut-off range, which is over an order of magnitude
more than in typical (non-cluster) crystals with standard
potentials (e.g. Lennard-Jones), slowing down the simu-
lation. Total simulation times are 107 or 108 MD sim-
ulation steps, which means that typical simulation run
times on a single GPU core are between a few hours and
a few days. We verify the findings of all cluster crys-
tals in several ways: (i) using NPT ensemble simula-
tions; and (ii) repeating some of the simulations using
a second MD package independent of HOOMD. Over-
all, we ran five simulations at each of the mean densities
c̄ ∈ {0.1, 0.2, . . . , 2.0} and for each of the five potentials—
a total of 500 simulations.

Diffraction patterns were obtained using a Fast Fourier
Transform of delta scatterers positioned at the centers of
the particles. All observables (diffraction patterns, ra-
dial distribution functions, cluster sizes) were time aver-
aged over 100 snapshots to minimize noise. The mean-
field densities shown in Fig. 2 of the main text and in
Fig. S6 below were obtained numerically by minimizing
the mean-field free-energy, as described by BDL [2]. In
order to obtain high resolution images more efficiently we
also employed the method of Jiang and Zhang [3].

For performing the clustering operation, we first tested
a naive clustering approach using a simple cut-off to join
neighboring particles. However, this did not yield reliable
results because in many cases clusters were either only
partially detected or nearby clusters grouped together.
Using the (still simple) DBSCAN algorithm [4] solved
these problems. As discussed in the text, we always use a
cluster size parameter MinPts = 8 and a variable cluster
distance parameter that was adjusted to yield optimal
results.
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Potential parameter Stripes 4-fold 6-fold 10-fold 12-fold

σ 0.784889 0.643467 0.714178 0.685894 0.770746

C0 1 1 1 1 1

C2 -1.11146 -0.72765 -0.875660 -0.794085 -1.09456

C4 0.466920 0.193641 0.305132 0.252769 0.439744

C6 -0.0552546 -0.0136926 -0.0283173 -0.0211568 -0.0492739

C8 0.00217197 0.000324970 0.000889644 0.000601617 0.00183183

D0 17.1419 22.8844 21.6032 23.0221 17.4524

D2 -43.1030 -68.9652 -57.8779 -63.9132 -44.5109

D4 35.4539 74.5064 52.9082 61.6601 37.5132

D6 -10.7407 -34.4021 -19.2394 -24.3493 -11.8896

D8 1.06780 5.70885 2.3966 3.34872 1.24928

TABLE S1. Potential parameters used in this study.

ADDITIONAL SIMULATION SNAPSHOTS

On the following pages, we include additional (mostly
larger) simulation snapshots of the observed cluster crys-
tals and their diffraction patterns. Note that all diffrac-
tion patterns show an inner set of sharp peaks, followed
by a ring with little scattering, followed by a second ring
of sharp peaks together with a broad ring of diffuse scat-
tering. The diffuse scattering is caused by the particle
disorder within the clusters.
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FIG. S1. Lamellar pattern formed from particles aligning into parallel stripes. Particles are still highly mobile within the
stripes. Simulation parameters: N = 16384, c̄ = 0.9, T = 0.03.

FIG. S2. Periodic 4-fold cluster crystal forming a square lattice. Simulation parameters: N = 16384, c̄ = 0.9, T = 0.03.
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FIG. S3. Periodic 6-fold cluster crystal forming a triangular lattice. Simulation parameters: N = 16384, c̄ = 0.7, T = 0.03.
Note how a few single-particle “clusters” seem to be caught at the centers of large-cluster triangles. At higher densities, these
proliferate to form a superlattice structure, as can be seen in Fig. S6.

FIG. S4. Quasiperiodic 10-fold cluster crystal forming a pentagon Penrose (P1) tiling with some phason disorder. Simulation
parameters: N = 16384, c̄ = 0.6, T = 0.03. Clusters are identified and colored according to their size from small (blue, size
≤ 10) to large (red, size ≥ 30). Second-nearest-neighbor clusters of size ≥ 19 are connected by bonds to obtain the tiling.
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FIG. S5. Quasiperiodic 12-fold cluster crystal forming a square-triangle-rhombus tiling with some phason disorder. Simulation
parameters: N = 16384, c̄ = 0.8, T = 0.03. Clusters are identified and colored according to their size from small (blue, size
≤ 10) to large (red, size ≥ 30). Second-nearest-neighbor clusters of size ≥ 10 are connected by bonds.
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FIG. S6. Confirmation of superstructures of secondary lamellae and secondary clusters, as predicted by the mean-field results.
At sufficiently high density and temperature (close to melting) secondary lower-density lamellae and clusters appear in the
striped phase (left column) and the hexagonal phase (right column), respectively. Top row: Simulation snapshots at density
c̄ = 2.0, the highest density studied in this work, and at temperatures close to melting. To decrease noise, these snapshots are
rapidly cooled to T = 0.1 (2-fold, left) and T = 0.06 (6-fold, right). Bottom row: The secondary superstructures as observed
in the mean-field calculations. The mean field results shown here are identical to the insets in Fig. 2 of the main text.
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FIG. S7. An incomplete transformation of the 12-fold quasicrystal into a compressed hexagonal phase observed at low
temperature. Simulation parameters: N = 16384, c̄ = 1.9, T = 10−3. Clusters are identified and colored according to their
size from small (blue, size ≤ 10) to large (red, size ≥ 30). Second-nearest-neighbor clusters of size ≥ 20 are connected by
bonds. The tiling consists of alternating rows of two types of compressed hexagonal tiles, each consisting of a pair of triangles
connected by either one rectangle or two.

FIG. S8. A σ-phase approximant of the 12-fold quasicrystal observed at low temperature. Simulation parameters: N = 16384,
c̄ = 1.6, T = 10−3. Clusters are identified and colored according to their size from small (blue, size ≤ 10) to large (red, size
≥ 30). Second-nearest-neighbor clusters of size ≥ 10 are connected by black bonds, revealing square, triangular, and rhombic
tiles that are the same building blocks for the dodecagonal quasicrystal shown in Fig. S5. Larger clusters (of size ≥ 45), located
at the centers of 12-fold rings, are connected by thick gray bonds, revealing the σ-phase approximant, where each vertex is
surrounded by a pair of triangles followed by a square, another triangle, and another square, commonly denoted as 32.4.3.4.
The unit cell of the approximant (four large triangles and two large squares) is highlighted green. Note the pseudo-12-fold
diffraction diagram, and compare with the one in Fig. S5.


	— Supplemental Material — Controlled Self-Assembly of Periodic and Aperiodic Cluster Crystals
	Abstract
	Determination of potential parameters
	Computational methods
	Additional simulation snapshots
	References


