9.5.2016

14. The Ricci tensor is defined by contracting one index of the curvature tensor:

$$R_{\mu\nu} = R^{\alpha}_{\mu\nu\alpha}$$

"Count" the number of independent DOF of the Ricci Tensor, and curvature tensor for d = 2, 3, 4. (2=1+1 etc.).

What could be the physical implications for Einstein's theory in low dimensions?

15. The Einstein equation is given by

$$G_{\mu\nu} = R_{\mu\nu} - \frac{1}{2}g_{\mu\nu}R = 8\pi G T_{\mu\nu}$$

where $R = R^{\alpha}_{\alpha}$ is the curvature scalar, and G Newton's constant.

Assume that d = 2 + 1 and that:

a. $T^{00} = M\delta(r)$.

(i.e. matter is static and matter carries only energy).

b. $g_{00} = N^2(r)$ and $g_{ij} = -e^{\phi(r)}\delta_{ij}$. (the metric has spherical symmetry).

Write down the resulting differential equations for $\phi(r)$ and N(r),

16. Show that the solution is

$$(ds)^{2} = (dt)^{2} - r^{-8GM}((dr)^{2} + r^{2}(d\theta)^{2})$$

** Generalize to the case of several point-particle sources, at $r = r_i$.

17. Show that spacetime is flat everywhere for $r \neq 0$: find new coordinates ρ and Θ and a transformations that brings the metric to the form:

$$(ds)^{2} = (dt)^{2} - ((d\rho)^{2} + \rho^{2}(d\Theta)^{2})$$

with $0 < \rho < \infty$, and $0 < \Theta < 2\pi\alpha$, $\alpha \equiv 1 - 4GM$.

Therefore space is equivalent to a cone (embedde in 3+1), and the matter is located at the wedge of the cone.

 $\ast\ast$ What happens in the case of several point-particle sources?