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In the present chapter we describe the key elements of the baseline model
that will be used as a reference framework in the remainder of the book. In
doing so we depart from the assumptions of the classical monetary economy
discussed in chapter 2 in two ways. First, we introduce imperfect competition
in the goods market, by assuming that each �rm produces a di¤erentiated
good for which it sets the price (instead of taking the price as given). Second,
we impose some constraints on the price adjustment mechanism, by assuming
that only a fraction of �rms can reset their prices in any given period. In par-
ticular, and following much of the literature, we adopt a model of staggered
price setting due to Calvo (1983), and characterized by with random price
durations.1 We refer to the resulting framework as the basic new Keynesian
model. As discussed in chapter 1, that model has become in recent years the
workhorse for the analysis of monetary policy, �uctuations and welfare.

The introduction of di¤erentiated goods requires that the household prob-
lem be modi�ed slightly relative to the one considered in the previous chapter.
We �rst discuss that modi�cation, before turning to the �rms�optimal price
setting problem and the implied in�ation dynamics.

1 Households

Once again we assume a representative in�nitely-lived household, seeking to
maximize

E0

1X
t=0

�t U (Ct; Nt)

where Ct is now a consumption index given by

Ct �
�Z 1

0

Ct(i)
1� 1

� di

� �
��1

with Ct(i) representing the quantity of good i consumed by the household
in period t. Note that we assume the existence of a continuum of goods
represented by the interval [0; 1]. The period budget constraint now takes
the form Z 1

0

Pt(i) Ct(i) di+Qt Bt � Bt�1 +Wt Nt + Tt

1The resulting in�ation dynamics can also be derived under the assumption of quadratic
costs of price adjustment. See, e.g. Rotemberg (1982).
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for t = 0; 1; 2:::, where Pt(i) is the price of good i, and where the remaining
variables are de�ned as in the previous chapter: Nt denotes hours of work (or
the measure of household members employed), Wt is the nominal wage, Bt
represents purchases of one-period bonds (at a price Qt), and Tt is a lump-
sum component of income (which may include, among other items, dividends
from ownership of �rms). The above sequence of period budget constraints
is supplemented with a solvency condition of the form limT!1EtfBTg � 0.
In addition to the consumption/savings and labor supply decision ana-

lyzed in the previous chapter, the household now must decide how to allocate
its consumption expenditures among the di¤erent goods. This requires that
the consumption index Ct be maximized for any given level of expendituresR 1
0
Pt(i) Ct(i) di. As shown in the appendix, the solution to that problem

yields the set of demand equations

Ct(i) =

�
Pt(i)

Pt

���
Ct (1)

for all i 2 [0; 1], where Pt �
hR 1
0
Pt(i)

1�� di
i 1
1��

is an aggregate price index.
Furthermore, and conditional on such optimal behavior, we haveZ 1

0

Pt(i) Ct(i) di = Pt Ct

i.e., we can write total consumption expenditures as the product of the price
index times the quantity index. Plugging the previous expression into the
budget constraint yields

Pt Ct +Qt Bt � Bt�1 +Wt Nt + Tt

which is formally identical to the constraint facing households in the sin-
gle good economy analyzed in chapter 2. Hence, the optimal consump-
tion/savings and labor supply decisions are identical to the ones derived
therein, and described by the conditions

�Un;t
Uc;t

=
Wt

Pt

Qt = � Et

�
Uc;t+1
Uc;t

Pt
Pt+1

�
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Under the assumption of a period utility given by U(Ct; Nt) =
C1��t

1�� �
N1+'
t

1+'
, and as shown in the previous chapter, the resulting log-linear versions

of the above optimality conditions take the form

wt � pt = � ct + ' nt (2)

ct = Etfct+1g �
1

�
(it � Etf�t+1g � �) (3)

where it � � logQt is the short-term nominal rate and � � � log � is the
discount rate, and where lower case letter are used to denote the logs of the
original variables. As before, the previous conditions will be supplemented,
when necessary, with an ad-hoc log-linear money demand equation of the
form:

mt � pt = yt � � it (4)

2 Firms

We assume a continuum of �rms indexed by i 2 [0; 1]. Each �rm produces a
di¤erentiated good, but they all use an identical technology, represented by
the production function

Yt(i) = At Nt(i)
1�� (5)

where At represents the level of technology, assumed to be common to all
�rms and to evolve exogenously over time.
All �rms face an identical isoelastic demand schedule given by (1), and

take the aggregate price level Pt and aggregate consumption index Ct as
given.
Following the formalism proposed in Calvo (1983), each �rm may reset

its price only with probability 1�� in any given period, independently of the
time elapsed since the last adjustment. Thus, each period a measure 1� � of
producers reset their prices, while a fraction � keep their prices unchanged.
As a result, the average duration of a price is given by (1 � �)�1. In this
context, � becomes a natural index of price stickiness.
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2.1 Aggregate Price Dynamics

As shown in the appendix, the above environment implies that the aggregate
price dynamics are described by the equation

�1��t = � + (1� �)

�
P �t
Pt�1

�1��
(6)

where �t � Pt
Pt�1

is the gross in�ation rate between t� 1 and t, and P �t is the
price set in period t by �rms reoptimizing their price in that period. Notice
that, as shown below, all �rms will choose the same price since they face
an identical problem. It follows from (6) that in a steady state with zero
in�ation (� = 1) we must have P �t = Pt�1 = Pt, for all t. Furthermore,
a log-linear approximation to the aggregate price index around that steady
state yields

�t = (1� �) (p�t � pt�1) (7)

The previous equation makes clear that, in the present setup, in�ation
results from the fact that �rms reoptimizing in any given period choose a price
that di¤ers from the economy�s average price in the previous period. Hence,
and in order to understand the evolution of in�ation over time, one needs
to analyze the factors underlying �rms�price setting decisions, a question to
which we turn next.

2.2 Optimal Price Setting

A �rm reoptimizing in period t will choose the price P �t that maximizes
the current market value of the pro�ts generated while that price remains
e¤ective. Formally, it solves the following problem:

max
P �t

1X
k=0

�k Et
�
Qt;t+k

�
P �t Yt+kjt �	t+k(Yt+kjt)

�	
subject to the sequence of demand constraints

Yt+kjt =

�
P �t
Pt+k

���
Ct+k (8)

for k = 0; 1; 2; :::where Qt;t+k � �k (Ct+k=Ct)
�� (Pt=Pt+k) is the stochastic

discount factor for nominal payo¤s, 	t(�) is the cost function, and Yt+kjt
denotes output in period t+ k for a �rm that last reset its price in period t.
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The �rst order condition associated with the problem above takes the
form:

1X
k=0

�k Et
�
Qt;t+k Yt+kjt

�
P �t �M  t+kjt

�	
= 0 (9)

where  t+kjt � 	0t+k(Yt+kjt) denotes the (nominal) marginal cost in period
t+ k for a �rm which last reset its price in period t, andM� �

��1 .
Note that in the limiting case of no price rigidities (� = 0) the previ-

ous condition collapses to the familiar optimal price setting condition under
�exible prices

P �t =M  tjt

which allows us to interpret M as the desired markup in the absence of
constraints on the frequency of price adjustment. Henceforth, we refer toM
as the desired or frictionless markup.
Next we log-linearize the optimal price setting condition (9) around the

zero in�ation steady state. Before doing so, however, it is useful to rewrite
it in terms of variables that have a well de�ned value in that steady state.
In particular, dividing by Pt�1 and letting �t;t+k � Pt+k=Pt, we can write

1X
k=0

�k Et

�
Qt;t+kYt+kjt

�
P �t
Pt�1

�M MCt+kjt �t�1;t+k

��
= 0 (10)

where MCt+kjt �  t+kjt=Pt+k is the real marginal cost in period t + k for a
�rm whose price was last set in period t.
In the zero in�ation steady state we must have P �t =Pt�1 = 1 and�t�1;t+k =

1 Furthermore, constancy of the price level implies that P �t = Pt+k in that
steady state, from which it follows that Yt+kjt = Y and MCt+kjt = MC,
since all �rms will be producing the same quantity of output. In addition,
Qt;t+k = �k must hold in that steady state. Accordingly, we must have
MC = 1=M. A �rst-order Taylor expansion of (10) around the zro in�ation
steady state yields:

p�t � pt�1 = (1� ��)
1X
k=0

(��)k Etfcmct+kjt + (pt+k � pt�1)g (11)

where cmct+kjt � mct+kjt�mc denotes the log deviation of marginal cost from
its steady state value mc = ��, and where � � logM is the log of the
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desired gross markup (which, forM close to one, is approximately equal to
the net markupM� 1).
In order to gain some intuition about the factors determining �rms�price

setting decision it is useful to rewrite the (11) as follows:

p�t = �+ (1� ��)

1X
k=0

(��)k Etfmct+kjt + pt+kg

Hence, �rms resetting their prices will choose a price that corresponds to
the desired markup over a weighted average of their current and expected
(nominal) marginal costs, with the weights being proportional to the proba-
bility of the price remaining e¤ective at each horizon, �k.

3 Equilibrium

Market clearing in the goods market requires

Yt(i) = Ct(i)

for all i 2 [0; 1] and all t. Letting aggregate output be de�ned as Yt ��R 1
0
Yt(i)

1� 1
� di

� �
��1

it follows that

Yt = Ct

must hold for all t. One can combine the above goods market clearing condi-
tion with the consumer�s Euler equation to yield the equilibrium condition.

yt = Etfyt+1g �
1

�
(it � Etf�t+1g � �) (12)

Market clearing in the labor market requires

Nt =

Z 1

0

Nt(i) di

Using (5) we have

Nt =

Z 1

0

�
Yt(i)

At

� 1
1��

di

=

�
Yt
At

� 1
1��
Z 1

0

�
Pt(i)

Pt

�� �
1��

di
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where the second equality follows from (1) and goods market clearing. Taking
logs,

(1� �) nt = yt � at + dt

where dt � (1��) log
R 1
0
(Pt(i)=Pt)

� �
1�� di is a measure of price (and, hence,

output) dispersion across �rms. In the appendix it is shown that, in a neigh-
borhood of the zero in�ation steady state, dt is equal to zero up to a �rst
order approximation. Hence one can write the following approximate relation
between aggregate output, employment and technology:

yt = at + (1� �) nt (13)

Next we derive an expression for an individual �rm�s marginal cost in
terms of the economy�s average real marginal cost. The latter is de�ned by

mct = (wt � pt)�mpnt

= (wt � pt)� (at � �nt)� log(1� �)

= (wt � pt)�
1

1� �
(at � �yt)� log(1� �)

for all t, where the second equality de�nes the economy�s average marginal
product of labor, mpnt, in a way consistent with (13). Using the fact that

mct+kjt = (wt+k � pt+k)�mpnt+kjt

= (wt+k � pt+k)�
1

1� �
(at+k � �yt+kjt)� log(1� �)

we have

mct+kjt = mct+k +
�

1� �
(yt+kjt � yt+k)

= mct+k �
��

1� �
(p�t � pt+k) (14)

where the second equality follows from the demand shedule (1) combined with
the market clearing condition ct = yt. Notice that under the assumption of
constant returns to scale (� = 0) we have mct+kjt = mct+k , i.e. marginal
cost is independent of the level of production and, hence, it is common across
�rms.
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Substituting (14) into (11) and rearranging terms we obtain

p�t � pt�1 = (1� ��)
1X
k=0

(��)k Et f� cmct+k + (pt+k � pt�1)g

= (1� ��)�
1X
k=0

(��)k Etfcmct+kg+ 1X
k=0

(��)k Etf�t+kg

where � � 1��
1��+�� � 1: Notice that the above discounted sum can be rewrit-

ten more compactly as the di¤erence equation

p�t � pt�1 = �� Etfp�t+1 � ptg+ (1� ��)� cmct + �t (15)

Finally, combining (7) and (15) yields the in�ation equation:

�t = � Etf�t+1g+ � cmct (16)

where

� � (1� �)(1� ��)

�
�

is strictly decreasing in the index of price stickiness �, in the measure of
decreasing returns �, and in the demand elasticity �.
Solving (16) forward, we can express in�ation as the discounted sum of

current and expected future deviations of real marginal costs from steady
state:

�t = �
1X
k=0

�k Etfcmct+kg
Equivalently, and de�ning the average markup in the economy as �t =

�mct, we see that in�ation will be high when �rms expect average markups
to be below their steady state (i.e. desired) level �, for in that case �rms that
have the opportunity to reset prices will choose a price above the economy�s
average price level, in order to realign their markup closer to its desired level.
It is worth emphasizing here that the mechanism underlying �uctuations

in the aggregate price level and in�ation laid out above has little in common
with the one at work in the classical monetary economy. Thus, in the present
model, in�ation results from the aggregate consequences of purposeful price-
setting decisions by �rms, which adjust their prices in light of current and
anticipated cost conditions. By contrast, in the classical monetary economy
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analyzed in chapter 2 in�ation is a consequence of the changes in the aggre-
gate price level that, given the monetary policy rule in place, are required
in order to support an equilibrium allocation that is independent of the evo-
lution of nominal variables, with no account given of the mechanism (other
than an invisible hand) that will bring about those price level changes.

Next we derive a relation between the economy�s real marginal cost and
a measure of aggregate economic activity. Notice that independently of the
nature of price setting, average real marginal cost can be expressed as

mct = (wt � pt)�mpnt

= (� yt + ' nt)� (yt � nt)� log(1� �)

=

�
� +

'+ �

1� �

�
yt �

1 + '

1� �
at � log(1� �) (17)

where derivation of the second and third equalities make use of the house-
hold�s optimality condition (2) and the (approximate) aggregate production
relation (13).
Furthermore, and as shown at the end of section 2.2, under �exible prices

the real marginal cost is constant and given by mc = ��. De�ning the
natural level of output, denoted by ynt ; as the equilibrium level of output
under �exible prices we have:

mc =

�
� +

'+ �

1� �

�
ynt �

1 + '

1� �
at � log(1� �) (18)

thus implying
ynt =  nya at + #ny (19)

where #ny � �
(1��) (��log(1��))

�(1��)+'+� > 0 and  nya � 1+'
�(1��)+'+� . Notice that when

� = 0 (perfect competition) the natural level of output corresponds to the
equilibrium level of output in the classical economy, as derived in chapter
2. The presence of market power by �rms has the e¤ect of lowering that
output level uniformly over time, without a¤ecting its sensitivity to changes
in technology.
Subtracting (18) from (17) we obtain

cmct = �� + '+ �

1� �

�
(yt � ynt ) (20)
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i.e., the log deviation of real marginal cost from steady state is proportional
to the log deviation of output from its �exible price counterpart. Following
convention, we henceforth refer to that deviation as the output gap, and
denote it by eyt � yt � ynt .

By combining (20) with (16) one can obtain an equation relating in�ation
to its one period ahead forecast and the output gap:

�t = � Etf�t+1g+ � eyt (21)

where � � �
�
� + '+�

1��
�
. Equation (21) is often referred to as the new Key-

nesian Phillips curve (or NKPC, for short), and constitutes one of the key
building blocks of the basic new Keynesian model.

The second key equation describing the equilibrium of the new Keynasian
model can be obtained by rewriting (12) in terms of the output gap as follows

eyt = � 1
�
(it � Etf�t+1g � rnt ) + Etfeyt+1g (22)

where rnt is the natural rate of interest, given by

rnt � �+ � Etf�ynt+1g
= �+ � nya Etf�at+1g (23)

Henceforth we will refer to (22) as the dynamic IS equation (or DIS, for
short). Under the assumption that the e¤ects of nominal rigidities vanish
asymptotically, we will have limT�!1Etfeyt+Tg = 0. In that case one can
solve equation (22) forward to yield the expression

eyt = � 1
�

1X
k=0

(rt+k � rnt+k) (24)

where rt � it�Etf�t+1g is the expected real return on a one period bond (i.e.
the real interest rate). The previous expression emphasizes the fact that the
output gap is proportional to the sum of current and anticipated deviations
between the real interest rate and its natural counterpart.

Equations (21) and (22), together with an equilibrium process for the
natural rate rnt (which in general will depend on all the real exogenous forces
in the model), constitute the non-policy block of the basic new Keynesian
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model. That block has a simple recursive structure: the NKPC determines
in�ation given a path for the output gap, whereas the DIS equation deter-
mines the output gap given a path for the (exogenous) natural rate and the
actual real rate. In order to close the model, we need to supplement those two
equations with one or more equations determining how the nominal interest
rate it evolves over time, i.e. with a description of how monetary policy is
conducted. Thus, and in contrast with the classical model analyzed in chap-
ter 2, when prices are sticky the equilibrium path of real variables cannot
be determined independently of monetary policy. In other words: monetary
policy is non-neutral.

In order to illustrate the workings of the basic model just developed, we
consider next two alternative speci�cations of monetary policy and analyze
some of their equilibrium implications.

4 Equilibrium Dynamics under Alternative
Monetary Policy Rules

4.1 Equilibrium under an Interest Rate Rule

We �rst analyze the equilibrium under a simple interest rate rule of the form:

it = �+ �� �t + �y eyt + vt (25)

where vt is an exogenous (possibly stochastic) component with zero mean.
We assume �� and �y are non-negative coe¢ cients, chosen by the monetary
authority. Note that the choice of the intercept � makes the rule consistent
with a zero in�ation steady state.
Combining (21), (22), and (25) we can represent the equilibrium condi-

tions by means of the following system of di¤erence equations.� eyt
�t

�
= AT

�
Etfeyt+1g
Etf�t+1g

�
+BT (brnt � vt) (26)

where brnt � rnt � �, and

AT � 

�
� 1� ���
�� �+ �(� + �y)

�
; BT � 


�
1
�

�
with 
 � 1

�+�y+���
.
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Given that both the output gap and in�ation are non-predetermined vari-
ables, the solution to (26) is locally unique if and only if AT has both eigen-
values within the unit circle.2 Under the assumption of non-negative coe¢ -
cients (��; �y) it can be shown that a necessary and su¢ cient condition for
uniqueness is given by:3

� (�� � 1) + (1� �) �y > 0 (27)

which we assume to hold, unless stated otherwise. An economic interpreta-
tion to the previous condition will be o¤ered in chapter 4.
Next we examine the economy�s equilibrium response to two exogenous

shocks�a monetary policy shock and a technology shock�when the central
bank follows the interest rate rule (25).

4.1.1 The E¤ects of a Monetary Policy Shock

Let us assume that the exogenous component of the interest rate, vt, follows
an AR(1) process

vt = �v vt�1 + "vt

where �v 2 [0; 1). Note that a positive (negative) realization of "vt should
be interpreted as a contractionary (expansionary) monetary policy shock,
leading to a rise (decline) in the nominal interest rate, given in�ation and
the output gap.
Since the natural rate of interest is not a¤ected by monetary shocks we

set brnt = 0, for all t for the pursposes of the present exercise. Next we guess
that the solution takes the form eyt =  yv vt and �t =  �v vt , where  yv and
 �v are coe¢ cients to be determined. Imposing the guessed solution on (22)
and (21) and using the method of undetermined coe¢ cients, we �nd:

eyt = �(1� ��v)�v vt

and
�t = ���v vt

where �v � 1
(1���v)[�(1��v)+�y ]+�(����v)

. It can be easily shown that as long

as (27) is satis�ed we have �v > 0. Hence, an exogenous increase in the
interest rate leads to a persistent decline in the output gap and in�ation.

2See, e.g., Blanchard and Kahn (1980)
3See Bullard and Mitra (2002) for a proof.
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Since the natural level of output is una¤ected by the monetary policy shock,
the response of output matches that of the output gap.
One can use (22) to obtain an expression for the real interest rate

brt = �(1� �v)(1� ��v)�v vt

which is thus shown to increase unambiguosly in response to an exogenous
increase in the nominal rate.
The response of the nominal interest rate combines both the direct e¤ect

of vt and the variation induced by lower output gap and in�ation. It is given
by: bit = brt + Etf�t+1g = [�(1� �v)(1� ��v)� �v�] �v vt

Note that if the persistence of the monetary policy shock, �v, is su¢ ciently
high, the nominal rate will decline in response to a rise in vt . This is a result
of the downward adjustment in the nominal rate induced by the decline in
in�ation and the output gap more than o¤setting the direct e¤ect of a higher
vt. In that case, and despite the lower nominal rate, the policy shock still
has a contractionary e¤ect on output, since the latter is inversely related to
the real rate, which goes up unambiguously.
Finally, one can use (4) to determine the change in the money supply

required to bring about the desired change in the interest rate. In particular,
the response of mt on impact is given by:

dmt

d"vt
=

dpt
d"vt

+
dyt
d"vt

� �
dit
d"vt

= ��v [(1� ��v)(1 + ��(1� �v)) + �(1� ��v)]

Hence, we see that the sign of the change in the money supply that
supports the exogenous policy intervention is, in principle, ambiguous. Even
though the money supply needs to be tightened to raise the nominal rate
given output and prices, the decline in the latter induced by the policy shocks
combined with the possibility of an induced nominal rate decline make it
impossible to rule out a countercyclical movement in money in response to an
interest rate shock. Note, however, that dit=d"vt > 0 is a su¢ cient condition
for a contraction in the money supply, as well as for the presence of a liquidity
e¤ect (i.e. a negative short-run comovement of the nominal rate and the
money supply in response to an exogenous monetary policy shock).
The previous analysis can be used to quantify the e¤ects of a monetary

policy shock, given numerical values for the model�s parameters. Next we
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brie�y present a baseline calibration of the model, which takes the relevant
period to correspond to a quarter.
In the baseline calibration of the model�s preference parameters we assume

� = 0:99, which implies a steady state real return on �nancial assets of about
four percent. We also assume � = 1 (log utility) and ' = 1 (a unitary
Frisch elasticity of labor supply), values commonly found in the business
cycle literature. We set the interest semi-elasticity of money demand, �, to
equal 4.4 In addition we assume � = 2=3, which implies an average price
duration of three quarters, a value consistent with the empirical evidence.5

As to the interest rate rule coe¢ cients we assume �� = 1:5 and �y = 0:5=4,
which are roughly consistent with observed variations in the Federal Funds
rate over the Greenspan era.6 Finally, we set �v = 0:5, a value associated
with a moderately persistent shock.
Figure 3.1 illustrates the dynamic e¤ects of an expansionary monetary

policy shock. The shock corresponds to an increase of 25 basis points in
"vt , which, in the absence of a further change induced by the response of
in�ation or the output gap, would imply an increase of 100 basis points in
the annualized nominal rate, on impact. The responses of in�ation and the
two interest rates shown in the �gure are expressed in annual terms (i.e. they
are obtained by multiplying by 4 the responses of �t, it and rt in the model).
In a way consistent with the analytical results above we see that the policy

shock generates an increase in the real rate, and a decrease in in�ation and
output (whose response corresponds to that of the output gap, since the
natural level of output is not a¤ected by the monetary policy shock). Note
than under our baseline calibration the nominal rate goes up, though by

4The calibration of � is based on the estimates of an OLS regression of (log) M2 inverse
velocity on the three month Treasury Bill rate (quarterly rate, per unit), using quarterly
data over the period 1960:1-1988:1. We focus on that period, since it is characterized by a
highly stable relationship between velocity and the nominal rate, which is consistent with
the model.

5See, in particular, the estimates in Galí, Gertler and López-Salido (2001) and Sbordone
(2002), based on aggregate data. Using the price of individual goods, Bils and Klenow
(2004) uncover a mean duration slightly shorter (7 months). After controling for sales,
Nakamura and Steinsson (2007) found an average price duration close to one year.

6See, e.g., Taylor (1999). Note that empirical interest rate rules are generally estimated
using in�ation and interest rate data expressed in annual rates. Conversion to quarterly
rates requires that the output gap coe¢ cient be divided by 4. As discussed later, the
output gap measure used in empirical interest rate rules does not necessarily match the
concept of output gap in the model.
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less than its exogenous component�as a result of the downward adjustment
induced by the decline in in�ation and the output gap. In order to bring
about the observed interest rate response, the central bank must engineer a
reduction in the money supply. The calibrated model thus displays a liquidity
e¤ect. Note also that the response of the real rate is larger than that of the
nominal rate as a result of the decrease in expected in�ation.
Overall, the dynamic responses to a monetary policy shock shown in

Figure 3.1 are similar, at least in a qualitative sense, to those estimated
using structural VAR methods, as described in chapter 1. Nevertheless, and
as emphasized in Christiano, Eichenbaum and Evans (2005), amomg others,
matching some of the quantitative features of the empirical impulse responses
requires that the basic new Keynesian model be enriched in a variety of
dimensions.

4.1.2 The E¤ects of a Technology Shock

In order to determine the economy �s response to a technology shock we
must �rst specify a process for the technology parameter fatg, and derive
the implied process for the natural rate. We assume the following AR(1)
process for fatg;

at = �a at�1 + "at (28)

where �a 2 [0; 1) and f"at g is a zero mean white noise process. Given (23),
the implied natural rate, expressed in terms of deviations from steady state,
is given by brnt = �� nya (1� �a) at

Setting vt = 0; for all t (i.e., turning o¤ monetary shocks), and guessing
that output gap and in�ation are proportional to brnt , we can apply the method
of undetermined coe¢ cients in a way analogous to previous subsection, or just
exploit the fact that brnt enters the equilibrium conditions in a way symmetric
to vt, but with the opposite sign, to obtain

eyt = (1� ��a)�a brnt
= �� nya(1� �a)(1� ��a)�a at

and

�t = ��a brnt
= �� nya(1� �a)��a at
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where �a � 1
(1���a)[�(1��a)+�y ]+�(����a)

> 0

Hence, and as long as �a < 1; a positive technology shock leads to a per-
sistent decline in both in�ation and the output gap. The implied equilibrium
responses of output and employment are given by

yt = ynt + eyt
=  nya (1� �(1� �a)(1� ��a)�a) at

and

(1� �) nt = yt � at

= [( nya � 1)� � nya(1� �a)(1� ��a)�a] at

Hence, we see that the sign of the response of output and employment
to a positive technology shock is in general ambiguous, depending on the
con�guration of parameter values, including the interest rate rule coe¢ cients.
In our baseline calibration we have � = 1 which in turn implies  nya = 1.
In that case, a technological improvement leads to a persistent employment
decline. Such a response of employment is consistent with much of the recent
empirical evidence on the e¤ects of technology shocks.7

Figure 3.2 shows the responses of a number of variables to a favorable
technology shock, as implied by our baseline calibration and under the as-
sumption of �a = 0:9. Notice that the improvement in technology is partly
accommodated by the central bank, which lowers nominal and real rates,
while increasing the quantity of money in circulation. That policy, however,
is not su¢ cient to close a negative output gap, which is responsible for the
decline in in�ation. Under the baseline calibration output increases (though
less than its natural counterpart), and employment declines, in a way con-
sistent with the evidence mentioned above.

4.2 Equilibrium under an Exogenous Money Supply

Next we analyze the equilibrium dynamics of the basic new Keynesian model
under an exogenous path for the growth rate of the money supply, �mt: As
a preliminary step, it is useful to rewrite the money market equilibrium
condition in terms of the output gap, as follows:

eyt � � it = lt � ynt (29)

7See Galí and Rabanal (2005) for a survey of that empirical evidence.

16



where lt � mt � pt. Substituting the latter equation into (22) yields

(1 + ��) eyt = �� Etfeyt+1g+ lt + � Etf�t+1g+ � brnt � ynt (30)

Note also that real balances are related to in�ation and money growth
through the identity

lt�1 = lt + �t ��mt (31)

Hence, the equilibrium dynamics for real balances, output gap and in-
�ation are described by equations (30), and (31), together with the NKPC
equation (21). They can be summarized compactly by the system

AM;0

24 eyt
�t
lt�1

35 = AM;1

24 Etfeyt+1g
Etf�t+1g

lt

35+BM
24 brnt

ynt
�mt

35 (32)

where

AM;0 �

24 1 + �� 0 0
�� 1 0
0 �1 1

35 ; AM;1 �

24 �� � 1
0 � 0
0 0 1

35 ; BM �

24 � �1 0
0 0 0
0 0 �1

35
The system above has one predetermined variable (lt�1) and two non-

predetermined variables (eyt and �t). Accordingly, a stationary solution will
exist and be unique if and only ifAM � A�1

M;0AM;1 has two eigenvalues inside
and one outside (or on) the unit circle. The latter condition can be shown to
be always satis�ed so, in contrast with the interest rate rule discussed above,
the equilibrium is always determined under an exogenous path for the money
supply.8

Next we examine the equilibrium responses of the economy to a monetary
policy shock and a technology shock.

4.2.1 The E¤ects of a Monetary Policy Shock

In order to illustrate how the the economy responds to an exogenous shock
to the money supply, we assume that �mt follows the AR(1) process

�mt = �m �mt�1 + "mt (33)

8Since AM is upper triangular its eigenvalues are given by its diagonal elements which
can be shown to be ��=(1+��), �, and �1. Hence existence and uniqueness of a stationary
solution is guaranteed under any rule implying an exogenous path for the money supply.
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where �m 2 [0; 1) and f"mt g is white noise.
The economy�s response to a monetary policy shock can be obtained by

determining the stationary solution to the dynamical system consisting of
(32) and (33) and tracing the e¤ects of a shock to "mt (while setting brnt =
ynt = 0, for all t).9 In doing so, we assume �m = 0:5, a value roughly
consistent with the �rst-order autocorrelation of money growth in postwar
U.S. data.
Figure 3.3 displays the dynamic responses of several variables of interest

to an expansionary monetary policy shock, which takes the form of positive
realization of "mt of size 0:25. That impulse corresponds to a one percent
increase, on impact, in the annualized rate of money growth, as shown in
the Figure. The sluggishness in the adjustment of prices implies that real
balances rise in response to the increase in the money supply. As a result,
clearing of the money market requires either a rise in output and/or a decline
in the nominal rate. Under the calibration considered here, output increases
by about a third of a percentage point on impact, after which it slowly reverts
back to its initial level. The nominal rate, however, shows a slight increase.
Hence, and in contrast with the case of an interest rate rule considered above,
a liquidity e¤ect does not emerge here. Note however that the rise in the
nominal rate does not prevent the real rate from declining persistently (due
to higher expected in�ation), leading in turn to an expansion in aggregate
demand and output (as implied by (24)) and, as a result, a persistent rise in
in�ation (which follows from (21)).
It is worth noting here that the absence of a liquidity e¤ect is not a

necessary feature of the exogenous money supply regime considered here,
but instead a consequence of the calibration used. To see this note that one
can combine equations (4) and (22), to obtain the di¤erence equation

it =
�

1 + �
Etfit+1g+

�m
1 + �

�mt +
� � 1
1 + �

Etf�yt+1g

whose forward solution yields:

it =
�m

1 + �(1� �m)
�mt +

� � 1
1 + �

1X
k=0

�
�

1 + �

�k
Etf�yt+1+kg

Note that when � = 1, as in the baseline calibration underlying Figure
3.3, the nominal rate always comoves positively with money growth. Never-
theless, and given that quite generally the summation term will be negative

9See e.g. Blanchard and Kahn (1980) a description of a solution method.
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(since for most calibrations output tends to adjust monotonically to its orig-
inal level after the initial increase), a liquidity e¤ect emerges given values of
� su¢ ciently above one combined with su¢ ciently low (absolute) values of
�m.

10

4.2.2 The E¤ects of a Technology Shock

Finally, we turn to the analysis of the e¤ects of a technology shock under a
monetary policy regime characterized by an exogenous money supply. Once
again, we assume the technology parameter at follows the stationary process
given by (28). That assumption combined with (19) and (23) is used to
determine the implied path of brnt and ynt as a function of at, as needed to
solve (32). In a way consistent with the assumption of exogenous money, I
set �mt = 0 for all t for the purpose of the present exercise.
Figure 3.4 displays the dynamic responses to a one percent increase in

the technology. A comparison with the responses shown in Figure 3.2 (corre-
sponding to the analogous exercise under an interest rate rule) reveals many
similarities: in both cases the output gap (and, hence, in�ation) display a
negative response to the technology improvement, as a result of output fail-
ing to increase as much as its natural level. Note, however, that in the case
of exogenous money the gap between output and its natural level is much
larger, which explains also the larger decline in employment. This is due to
the upward response of the real rate implied by the unchanged money supply,
which contrasts with its decline (in response to the negative response of in�a-
tion and the output gap) under the interest rate rule. Since the natural real
rate also declines in response to the positive technology shock (in order to
support the transitory increase in output and consumption), the response of
interest rates generated under the exogenous money regime becomes overly
contractionary, as illustrated in Figure 3.4.

The previous simulations have served several goals. First, they have
helped us illustrate the workings of the new Keynesian model, i.e. how the
model can be used to answer some speci�c questions about the behavior of
the economy under di¤erent assumption. Secondly, we have seen how, under
a plausible calibration, the simulated responses to monetary and technology
shocks display notable similarities (at least qualitative) with the empirical
evidence on the e¤ects of those shocks. Thirdly, the previous analysis has

10See Galí (2003) for a detailed analysis.
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made clear that monetary policy in the new Keynesian model can have large
and persistent e¤ects on both real and nominal variables. The latter feature
leads one to raise a natural question, which is the focus of the next chapter:
how should monetary policy be conducted?

5 Notes on the Literature

Early examples of microfounded monetary models with monopolistic compe-
tition and sticky prices can be found in Akerlof and Yellen (1985), Mankiw
(1985), Blanchard and Kiyotaki (1987) and Ball and Romer (1990).
An early version and analysis of the baseline new Keynesian model can

be found in Yun (1996), which used a discrete-time version of the staggered
price-setting model originally developed in Calvo (1983). King and Wolman
(1996) provides a detailed analysis of the steady state and dynamic properties
of that model. King andWatson (1996).compare its predictions regarding the
cyclical properties.of money, interest rates, and prices with those of �exible
price models. Woodford (1996) incorporates a �scal sector in the model and
analyzes its properties under a non-Ricardian �scal policy regime.
An in�ation equation identical to the new Keynesian Phillips curve can

be derived under the assumption of quadratic costs of price adjustment, as
shown in Rotemberg (1982). Hairault and Portier (1993) developed and
analyzed an early version of a monetary model with quadratic costs of price
adjustment and compared its second moment predictions with those of the
French and U.S. economies.
Two main alternatives to the Calvo random price duration model can

be found in the literature. The �rst one is given by staggered price setting
models with a deterministic price duration, originally proposed by Taylor
(1980) in the context of a non microfounded model. A microfounded version
of the Taylor model can be found in Chari, Kehoe and McGrattan (2000)
who analyzed the output e¤ects of exogenous monetary policy shocks. An
alternative price-setting structure is given by state dependent models, in
which which the timing of price adjustments is in�uenced by the state of the
economy. A quantitative analysis of a state dependent pricing model can be
found in Dotsey, King and Wolman (1999) and, more recently, in Golosov
and Lucas (2003) and Gertler and Leahy (2006).
The empirical performance of new Keynesian Phillips curve has been the

object of numerous criticisms. An early critical assessment can be found in
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Fuhrer and Moore (1986). Mankiw and Reis (2002) give a quantitative review
of the perceived shortcomings of the NKPC and propose an alternative price
setting structure, based on the assumption of sticky information. Galí and
Gertler (1999), Sbordone (2002) and Galí, Gertler and López-Salido (2002)
provide favorable evidence of the empirical �t the equation relating in�ation
to marginal costs, and discuss the di¢ culties in estimating or testing the
NKPC given the unobservability of the output gap.
Rotemberg and Woodford (1999) and Christiano, Eichenbaum and Evans

(2005) provide empirical evidence on the e¤ects monetary policy shocks, and
discuss a number of modi�cations of the baseline new Keynesian model aimed
at improving the model�s ability to match the estimated impulse responses.
Evidence on the e¤ects of technology shocks and its implications for the

relevance of alternative models can be found in Galí (1999) and Basu, Fernald
and Kimball (2004), among others. Recent evidence as well as alternative
interpretations are surveyed in Galí and Rabanal (2005).
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Appendix

Optimal Allocation of Consumption Expenditures

The problem of maximization of Ct for any given expenditure level
R 1
0
Pt(i) Ct(i) di

� Zt can be formalized by means of the Lagrangean

L =
�Z 1

0

Ct(i)
1� 1

� di

� �
��1

� �

�Z 1

0

Pt(i) Ct(i) di� Zt

�
The associated �rst order conditions are:

Ct(i)
� 1
� Ct

1
� = � Pt(i)

for all i 2 [0; 1]. Thus, for any two goods (i; j) we have:

Ct(i) = Ct(j)

�
Pt(i)

Pt(j)

���
which can be substituted into the expression for consumption expenditures
to yield

Ct(i) =

�
Pt(i)

Pt

���
Zt
Pt

for all i 2 [0; 1]. The latter condition can then be substituted into the
de�nition of Ct to obtainZ 1

0

Pt(i) Ct(i) di = Pt Ct

Combining the two previous equations we obtain the demand schedule:

Ct(i) =

�
Pt(i)

Pt

���
Ct

Aggregate Price Level Dynamics

Let S(t) � [0; 1] represent the set of �rms not re-optimizing their posted
price in period t. Using the de�nition of the aggregate price level and the
fact that all �rms resetting prices will choose an identical price P �t we have
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Pt =

�Z
S(t)

Pt�1(i)
1�� di+ (1� �) (P �t )

1��
� 1
1��

=
�
� (Pt�1)

1�� + (1� �) (P �t )
1��� 1

1��

where the second equality follows from the fact that the distribution of prices
among �rms not adjusting in period t corresponds to the distribution of
e¤ective prices in period t� 1, though with total mass reduced to �.
Dividing both sides by Pt�1 ,

�1��t = � + (1� �)

�
P �t
Pt�1

�1��
(34)

where �t � Pt
Pt�1

. Notice that in a steady state with zero in�ation P �t =
Pt�1 = Pt , for all t.
Log-linearization of (34) around �t = 1 and

P �t
Pt�1

= 1 yields:

�t = (1� �) (p�t � pt�1) (35)

Price Dispersion

From the de�nition of the price index:

1 =

Z 1

0

�
Pt(i)

Pt

�1��
di

=

Z 1

0

expf(1� �)(pt(i)� pt)g di

' 1 + (1� �)

Z 1

0

(pt(i)� pt) di+
(1� �)2

2

Z 1

0

(pt(i)� pt)
2 di

where the approximation results from a second-order Taylor expansion around
the zero in�ation steady state. Thus, and up to second order, we have

pt ' Eifpt(i)g+
(1� �)

2

Z 1

0

(pt(i)� pt)
2 di
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where Eifpt(i)g �
R 1
0
pt(i) di is the cross-sectional mean of (log) prices.

In addition,Z 1

0

�
Pt(i)

Pt

�� �
1��

di =

Z 1

0

exp

�
� �

1� �
(pt(i)� pt)

�
di

' 1� �

1� �

Z 1

0

(pt(i)� pt) di+
1

2

�
�

1� �

�2 Z 1

0

(pt(i)� pt)
2 di

' 1 +
1

2

�(1� �)

1� �

Z 1

0

(pt(i)� pt)
2 di+

1

2

�
�

1� �

�2 Z 1

0

(pt(i)� pt)
2 di

= 1 +
1

2

�
�

1� �

�
1

�

Z 1

0

(pt(i)� pt)
2 di

' 1 +
1

2

�
�

1� �

�
1

�
varifpt(i)g > 1

where � � 1��
1��+�� , and where the last equality follows from the observation

that, up to second order,Z 1

0

(pt(i)� pt)
2 di '

Z 1

0

(pt(i)� Eifpt(i)g)2 di

� varifpt(i)g

Finally, using the de�nition of dt we obtain

dt � (1� �) log

Z 1

0

�
Pt(i)

Pt

�� �
1��

di ' 1

2

�

�
varifpt(i)g
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Exercises
1. Interpreting Discrete-Time Records of Data on Price Adjust-

ment Frequency

Suppose �rms operate in continuous time, with the pdf for the duration
of the price of an individual good being f(t) = � exp(�� t) , where t 2 R+
is expressed in month units.
a) Show that the implied instantaneous probability of a price change is

constant over time and given by �.
b) What is the mean duration of a price? What is the median duration?

What is the relationship between the two?
c) Suppose that the prices of individual goods are recorded once a month

(say, on the �rst day, for simplicity). Let �t denote the fraction of items in a
given goods category whose price in month t is di¤erent from that recorded
in month t� 1 (note: of course, the price may have changed more than once
since the previous record). How would you go about estimating parameter
�?
d) Given information on monthly frequencies of price adjustment, how

would you go about calibrating parameter � in a quarterly Calvo model?

2. Introducing Government Purchases in the Basic New Key-
nesian Model
Assume that the government purchases quantity Gt(i) of good i, for all

i 2 [0; 1]. Let Gt �
hR 1
0
Gt(i)

1� 1
� di

i �
��1

denote an index of public consump-
tion, which the government seeks to maximize for any level of expendituresR 1
0
Pt(i) Gt(i) di. We assume government expenditures are �nanced by means

of lump-sum taxes.
a) Derive an expression for total demand facing �rm i.
b) Derive a log-linear aggregate goods market clearing condition that

is valid around a steady state with a constant public consumption share
SG � G

Y
.

c) Derive the corresponding expression for average real marginal cost as
a function of aggregate output, government purchases, and technology, and
provide some intuition for the e¤ect of government purchases.
d) How is the equilibrium relationship linking interest rates to current

and expected output a¤ected by the presence of government purchases?

3. Government Purchases and Sticky Prices
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Consider a model economy with the following equilibrium conditions. The
household�s log-linearized Euler equation takes the form:

ct = �
1

�
(it � Etf�t+1g � �) + Etfct+1g

where ct is consumption, it is the nominal rate, and �t+1 � pt+1 � pt is the
rate of in�ation between t and t+1 (as in the text, lower case letters denote
the logs of the original variable). The household�s log-linearized labor supply
is given by:

wt � pt = � ct + ' nt

where wt denotes the nominal wage, pt.is the price level, and nt is employ-
ment.
Firms�technology is given by:

yt = nt

The time between price adjustments is random, which gives rise to an
in�ation equation:

�t = � Etf�t+1g+ � eyt
where eyt � yt�ynt is the output gap.(with ynt representing the natural level of
output). We assume that in the absence of constraints on price adjustment
�rms would set a price equal to a constant markup over marginal cost given
by � (in logs).
Suppose that the government purchases a fraction � t of the output of

each good, with � t varying exogenously. Government purchases are �nanced
through lump-sum taxes.(remark: we ignore the possibility of capital accu-
mulation or the existence of an external sector).
a) Derive a log-linear version of the goods market clearing condition, of

the form yt = ct + gt., where gt � � log(1� � t).
b) Derive an expression for (log) real marginal cost mct as a function of

yt and gt .
c) Determine the behavior of the natural level of output ynt as a function

of gt and discuss the mechanism through which a �scal expansion leads to
an increase in output when prices are �exible.
d) Assume that fgtg follows a simple AR(1) process with autoregressive

coe¢ cient �g 2 [0; 1). Derive the DIS equation:
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eyt = Etfeyt+1g � 1

�
(it � Etf�t+1g � rnt )

together for an expression for the natural rate rnt as a function of gt.

4. Indexation and the New Keynesian Phillips Curve

Consider the Calvo model of staggered price setting with the following
modi�cation: in the periods between price re-optimizations �rms adjust me-
chanically their prices according to some indexation rule. Formally, a �rm
that re-optimizes its price in period t (an event which occurs with probability
1� �) sets a price P �t in that period. In subsequent periods (i.e., until it re-
optimizes prices again) its price is adjusted according to one of the following
two alternative rules:
Rule #1: full indexation to steady state in�ation � :

Pt+kjt = Pt+k�1jt �

Rule #2: partial indexation to past in�ation (assuming zero in�ation in
the steady state)

Pt+kjt = Pt+k�1jt (�t+k�1)
!

for k = 1; 2; 3; :::and
Pt;t = P �t

and where Pt+kjt denotes the price e¤ective in period t+k for a �rm that last
re-optimized its price in period t, �t � Pt

Pt�1
is the aggregate gross in�ation

rate, and ! 2 [0; 1] is an exogenous parameter that measures the degree of
indexation (notice that when ! = 0 we are back to the standard Calvo model,
with the price remaining constant between re-optimization period).
Suppose that all �rms have access to the same constant returns to scale

technology and face a demand schedule with a constant price elasticity �.
The objective function for a �rm re-optimizing its price in period t (i.e.,

choosing P �t ) is given by

max
P �t

1X
k=0

�k Et
�
Qt;t+k [Pt+kjt Yt+kjt �	t+k(Yt+kjt)]

	
subject to a sequence of demand contraints, and the rules of indexation
described above. Yt+kjt denotes the output in period t + k of a �rm that
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last re-optimized its price in period t, Qt;t+k � �k
�
Ct+k
Ct

���
Pt
Pt+k

is the usual
stochastic discount factor for nominal payo¤s, 	 is the cost function, and
� is the probability of not being able to re-optimize the price in any given
period. For each indexation rule:

a. Using the de�nition of the price level index Pt �
hR 1
0
Pt(i)

1�� di
i 1
1��

derive a log-linear expression for the evolution of in�ation �t as a function of
the average price adjustment term p�t � pt�1.

b. Derive the �rst order condition for the �rm �s problem, which deter-
mines the optimal price P �t .

c. Log-linearize the �rst-order condition around the corresponding steady
state and derive an expression for p�t (i.e., the approximate log-linear price
setting rule).

d. Combine the results of (a) and (c) to derive an in�ation equation of
the form: b�t = � Etfb�t+1g+ � cmct
where b�t � �t � � in the case of rule #1, and

�t = 
b �t�1 + 
f Etf�t+1g+ � cmct
in the case of rule #2 .

5. Optimal Price Setting and Equilibrium Dynamics in the Tay-
lor Model

We assume a continuum of �rms indexed by i 2 [0; 1]. Each �rm produces
a di¤erentiated good, with a technology

Yt(i) = At Nt(i)

where At represents the level of technology, and at � logAt evolves exoge-
nously according to some stationary stochastic process.
Each period a fraction 1

N
of �rms reset their prices, which then remain

e¤ective for N periods. Hence a �rm i setting a new price P �t in period t will
seek to maximize

N�1X
k=0

Et
�
Qt;t+k

�
P �t Yt+kjt �	t+k(Yt+kjt)

�	
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subject to

Yt+kjt = (P
�
t =Pt+k)

�� Ct+k

where Qt;t+k � �k
�
Ct+k
Ct

��� �
Pt
Pt+k

�
is the usual stochastic discount factor

for nominal payo¤s.
a) Show that P �t must satisfy the �rst order condition:

N�1X
k=0

Et
�
Qt;t+k Y

d
t+kjt

�
P �t �M  t+k

�	
= 0

where  t � 	0t is the nominal marginal cost andM� �
��1

b) Derive the following log-linearized optimal price setting rule (around
a zero in�ation steady state):

p�t = �+
N�1X
k=0

!k Et
�
 t+k

	
where !k � �k(1��)

1��N and � � logM. Show that in the limiting case of � = 1
(no discounting) we can rewrite the above equation as

p�t = �+
1

N

N�1X
k=0

Et
�
 t+k

	
How does the previous price setting rule di¤er from the one generated by

the Calvo model?

c) Recalling the expression for the aggregate price index Pt �
hR 1
0
Pt(i)

1�� di
i 1
1��
,

show that around a zero in�ation steady state the (log) price level will satisfy:

pt =

�
1

N

�N�1X
k=0

p�t�k

d) Consider the particular case of N = 2 and � = 1, and assume that the
consumer�s marginal rate of substitution between labor and consumption is
given by �ct + 'nt. Assume also that all output is consumed. Show that in
this case we can write:

p�t =
1

2
p�t�1 +

1

2
Etfp�t+1g+ � (eyt + Etfeyt+1g)
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where � � � + ':
e) Assume that money demand takes the simple form mt � pt = yt and

that both mt and at follow (independent) random walks, with innovations
"mt and "

a
t , respectively. Derive a closed-form expression for the output gap,

employment, and the price level as a function of the exogenous shocks.
f) Discuss the in�uence of � on the persistence of the e¤ects of a monetary

shock, and provide some intuition for that result.

6. The Mankiw-Reis Model: In�ation Dynamics under Prede-
termined Prices

Suppose that each period a fraction of �rms 1�� gets to choose a path of
future prices for their respective goods (a �price plan�), while the remaining
fraction � keep their current price plans. We let fPt;t+kg1k=0 denote the price
plan chosen by �rms that get to revise that plan in period t. Firm�s technol-
ogy is given by Yt(i) =

p
At Nt(i). Consumer�s period utility is given assumed

to take the form U(Ct; Nt) = Ct � N2
t

2
, where Ct �

hR 1
0
Ct(i)

1� 1
� di
i �
��1
. The

demand for real balances is assumed to be given by Mt

Pt
= Ct. All output is

consumed.

a) Let Pt �
hR 1
0
Pt(i)

1�"di
i 1
1�"

denote the aggregate price index. Show
that, up to a �rst order approximation, we will have:

pt = (1� �)
1X
j=0

�j pt�j;t (36)

b) A �rm i; revising its price plan in period t will seek to maximize

1X
k=0

�k Et

�
Qt;t+kYt+k(i)

�
Pt;t+k �

Wt+kp
At+k

��
Derive the �rst order condition associated with that problem, and show

that it implies the following approximate log-linear rule for the price plan:

pt;t+k = �+ Etf t+kg (37)

for k = 0; 1; 2; :::where  t = wt � 1
2
at is the nominal marginal cost.

c) Using the optimality conditions for the consumer�s problem, and the
labor market clearing condition show that the natural level of output satis�es
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ynt = �� + at, and (ii) the (log) real marginal cost (in deviation from its
perfect foresight steady state value) equals the output gap, i.e.

cmct = eyt
for all t, where eyt � yt � ynt :
d) Using (36) and (37) show how one can derive the following equation

for in�ation:

�t =
1� �

�
eyt + 1� �

�

1X
j=1

�j Et�jf�eyt + �tg (38)

e) Suppose that the money supply follows a random walk process mt =
mt�1+ut, wheremt � logMt and futg is white noise. Determine the dynamic
response of output, employment, and in�ation to a money supply shock.
Compare the implied response to the one we would obtain under the standard
new Keynesian Phillips curve, where �t = � Etf�t+1g+ � eyt. (hint: use the
fact that in equilibrium yt = mt � pt to substitute for eyt in (38), in order to
obtain a di¤erence equation for the (log) price level)
f) Suppose that technology is described by the random walk process at =

at�1 + "t, where where at � logAt, and f"tg is white noise. Determine the
dynamic response of output, the output gap, employment, and in�ation to a
technology shock. Compare the implied response to the one we would obtain
under the standard new Keynesian Phillips curve, where �t = � Etf�t+1g+
� eyt. (hint: same as above).
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